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Abstract
Early diagnosis is essential for the safer perinatal management of placenta accreta spectrum (PAS). We used transcriptome 
analysis to investigate diagnostic maternal serum biomarkers and the mechanisms of PAS development. We analyzed eight 
formalin-fixed paraffin-embedded placental specimens from two placenta increta and three placenta percreta cases who 
underwent cesarean hysterectomy at Sapporo Medical University Hospital between 2013 and 2019. Invaded placental regions 
were isolated from the uterine myometrium and RNA was extracted. The transcriptome difference between normal placenta 
and PAS was analyzed by microarray analysis. The PAS group showed markedly decreased expression of placenta-specific 
genes such as LGALS13 and the pregnancy-specific beta-1-glycoprotein (PSG) family. Term enrichment analysis revealed 
changes in genes related to cellular protein catabolic process, female pregnancy, autophagy, and metabolism of lipids. From 
the highly dysregulated genes in the PAS group, we investigated the expression of PSG family members, which are secreted 
into the intervillous space and can be detected in maternal serum from the early stage of pregnancy. The gene expression 
level of PSG6 in particular was progressively decreased from placenta increta to percreta. The PSG family, especially PSG6, 
is a potential biomarker for PAS diagnosis.

Keywords Placenta accreta spectrum · Diagnostic marker · Transcriptome analysis · Pregnancy-specific beta-1-
glycoprotein

Introduction

Placenta accreta spectrum (PAS) is a disease that not only 
causes massive hemorrhage during delivery, but also may 
require hysterectomy when dissection of the placenta from 
the uterus is impossible [1]. PAS can damage adjacent 
organs such as the bladder and rectum through surgery or 
direct invasion and even result in maternal death [1]. PAS 
is classified into three major groups according to adhesion 
severity: placenta accreta, increta, and percreta. In the lat-
ter, the most severe PAS, the average blood loss without 
any prophylactic method is 4800 ± 9950 g [2]. It has been 

suggested that blood loss can be dramatically reduced by 
interrupting blood flow with interventional radiology [3]. 
Although characteristic complications were reported with 
prophylactic interventional radiology [4], it can significantly 
reduce the risk of massive hemorrhage and maternal death.

Repeated cesarean section and placental previa are the 
most important risk factors for the development of PAS [5]. 
Recently, IVF has also been shown to be a risk factor for the 
development of PAS [6]. Therefore, the frequency of PAS 
may continue to increase not only because of the increasing 
age of pregnant women, but also because of the expansion of 
IVF technology. Accordingly, a reliable method for the early 
diagnosis of PAS is an essential issue in perinatal care, now 
and in the future. However, the diagnosis of PAS is limited 
to ultrasound or MRI imaging. According to guidelines and 
expert opinion, ultrasonography is the most useful tool for 
PAS diagnosis [7]. The ultrasonographic diagnosis of PAS 
principally relies on disappearance of the normal uteropla-
cental interface (clear zone), extreme thinning of the under-
lying myometrium, and vascular changes within the placenta 
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(lacunae) and placental bed (hypervascularity) [8]. However, 
the detection sensitivity is limited to about 90%. MRI can be 
used as a secondary examination if necessary [7], but some 
controversial reports suggest that MRI is not useful because 
it can be misleading [9]. Thus, there is currently no reliable 
method for the preliminary diagnosis of PAS.

Due to the above situation, various attempts have been 
made to establish biomarkers. Although several studies have 
suggested that placenta-specific proteins such as plasma pro-
tein-A (PAPP-A) and alpha-fetoprotein (AFP) may be useful 
for the detection of PAS [10], their lack of disease specific-
ity and diagnostic accuracy has undermined their practical 
application. In recent years, the ability of omics analysis to 
detect biomarkers has been explored. A study using plasma 
proteomics by SOMAscan analysis (SomaLogic, Inc., 
Boulder, CO) detected the presence of antithrombin III and 
medial plasminogen activator inhibitor [11]. However, no 
placenta-specific marker was identified due to the limited 
library used in the SOMAscan analysis. In another investiga-
tion, microarray transcriptome analysis of fresh cytotropho-
blasts from PAS showed increased expression of the DOCK4 
gene, which is thought to be involved in cancer invasion. 
The association of trophoblast invasion with DOCK4 was 
only confirmed in this work, and no diagnostic biomarker 
has been established [12]. Although not an omics analysis, 
a new technology has been reported to capture circulating 
trophoblast (cTB) cells from maternal blood using a Nan-
oVelcro chip [13]. This novel method is able to distinguish 
PAS from non-PAS with very high accuracy (area under the 
curve, 0.943) by detecting cTB cell clusters [13].

In the present study, we aimed to establish a biomarker 
for the diagnosis of PAS by harvesting placenta from the 
junction of the myometrium and placenta in patients with 
severe PAS for microarray transcriptome analysis. We found 
that the expression of pregnancy-specific beta-1-glycopro-
tein (PSG) family genes, especially PSG6, decreased with 
the severity of placental invasion. The PSG family can be 
identified in maternal blood as protein [14, 15] or cell-free 

mRNA [16], suggesting that PSG6 may be useful as a new 
biomarker for PAS diagnosis.

Materials and methods

Patients and specimens

Surgical specimens from placenta increta and percreta 
patients requiring hysterectomy at the time of cesarean 
delivery were harvested. In these patients, the uterus and 
placenta were removed at the same time because of the dif-
ficulty in releasing the adhesions. We also harvested nor-
mal placenta for a negative control of placental invasion 
from patients who underwent repeated cesarean sections, at 
around 37 weeks of gestation. All patients had been treated 
at Sapporo Medical University Hospital from 2013 to 2019. 
We analyzed formalin-fixed paraffin-embedded (FFPE) sam-
ples as described below and used two samples from different 
sites of the invasion for placenta percreta cases because of 
their severe placental invasion into the myometrium. The 
patients are summarized in Table 1.

Total RNA isolation from FFPE placenta specimens 
and microarray analysis

FFPE blocks of placental specimens were sliced into 
5-μm-thick sections, and the placental region was manually 
macrodissected from uterine myometrium using a scalpel for 
PAS specimens (Fig. 1). Macrodissection was not performed 
for control FFPE placenta specimens and a whole slice was 
used for analysis. RNA was isolated from FFPE placenta 
specimens using an RNeasy FFPE Kit (Qiagen, Valencia, 
CA) following the manufacturer’s protocol and as previously 
reported [17]. The Agilent 2100 Bioanalyzer microchip elec-
trophoresis system and Agilent RNA 6000 Nano Kit (Agilent 
Technologies Inc., Santa Clara, CA) were used to determine 
RNA integrity number (RIN) values (Table S1). Purified 

Table 1  Clinical backgrounds of the specimens used in the microarray analysis

Group Case No Sample No Disease Opera-
tive date 
(year)

Surgical method Gestational 
age at deliv-
ery

Birth weight (g) Apgar 
score 
(1/5 min)

Blood loss (g)

PAS 1 1, 2 Percreta 2015 Cesarean hysterectomy 
(subtotal)

34w5d 2436 5/8 7180

2 3 Increta 2013 Cesarean hysterectomy 37w1d 2146 8/9 720
3 4 Increta 2019 Cesarean hysterectomy 32w6d 1952 7/8 1410
4 5, 6 Percreta 2018 Cesarean hysterectomy 34w3d 2112 6/8 2600
5 7, 8 Percreta 2019 Cesarean hysterectomy 31w1d 1888 6/7 7700

Control 6 9 Repeat C/S 2019 Cesarean section 37w1d 2374 8/9 142
7 10 Repeat C/S 2019 Cesarean section 36w6d 2504 8/9 645
8 11 Repeat C/S 2019 Cesarean section 37w1d 3094 8/9 1128
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total RNA was used as input for cDNA preparation using 
the GeneChip™ WT Pico Reagent Kit (Affymetrix, Thermo 
Fisher Scientific, Waltham, MA). Fragmented and labeled 
samples were hybridized to GeneChip™ Human Gene 2.0 ST 
Arrays (Affymetrix, Thermo Fisher Scientific). Scanning was 
performed on a GeneChip™ Scanner 3000 7G (Affymetrix, 
Thermo Fisher Scientific). The resulting CEL files were loaded 
into the Transcriptome Analysis Console 4.0 software package 
(TAC 4.0, Affymetrix) for data analysis. Genes were filtered 
(|fold change: FC|> 1.2, log2 scale; p < 0.05) for the identifica-
tion of differentially expressed genes. In addition, only probes 
linked to NM RefSeq accession IDs were included. Enrich-
ment analysis was performed using Metascape [18]. The raw 
microarray data have been deposited in the NCBI GEO data-
base (GSE189267).

Immunohistochemical staining and quantification 
of intensity

After epitope retrieval using Novocastra Epitope Retrieval 
Solution (pH 9) and quenching of endogenous peroxidase 
activity using 3% peroxidase, sections (5-μm-thick) of FFPE 
placental specimens were immunostained using antibod-
ies. To stain specimens, we used a monoclonal antibody 
against PSG6 (1:1000; MAB8598, R&D) and a polyclonal 
antibody against human chorionic gonadotropin (hCG) 
(1:1000; A0231, DAKO). Subsequent incubation with a 
biotinylated secondary antibody was performed. Slides were 
then counterstained with hematoxylin, rinsed, dehydrated 
through graded alcohol to a nonaqueous solution, and cov-
erslipped with mounting medium. The intensity of PSG6 
staining was assessed as strong (3), moderate (2), weak 

Fig. 1  Outline of the macrodissection of FFPE placenta specimens and microarray preparation. Invaded placenta was separated from FFPE 
slides by macrodissection. Five slices were used for each specimen in RNA extraction
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(1) or negative (0). And proportions of positively stained 
trophoblast regions were recorded for each intensity level. 
Finally, we calculated an Immunoreactivity score (IRS) for 
each slide by multiplying the intensity level with the propor-
tion and summing them as previously reported (i.e., intensity 
1 × proportion 0.2 + intensity 2 × proportion 0.5 + intensity 
3 × proportion 0.3 = immunoreactive score 2.1) [19, 20]. The 
score was statistically analyzed by two-tailed student’s t test.

Results

Clinical backgrounds of PAS cases

The clinical backgrounds of the patients analyzed in this 
study are summarized in Table 1. Of the five PAS patients, 
three had placenta percreta and two had placenta increta, 
and all required total hysterectomy due to difficult placental 
removal from the uterus during cesarean section. All PAS 
cases were finally diagnosed by pathologists by histologi-
cal examination. The mean number of weeks of gestation 
was 33.6 weeks, and four of the five cases gave birth in 
the preterm period. The average amount of blood loss at 
the time of surgery was 3922 g, but all mothers and babies 
survived. Placentas from repeat cesarean section patients 
were used as negative controls. All placentas of control cases 

detached smoothly from the uterus, and no abnormalities 
were observed grossly or histologically.

Unique gene expression signatures in PAS groups

Expression variations were examined in 1,010 genes after 
statistical filtering. Of the 1010 genes, 254 had upregu-
lated expression in PAS and the remaining 756 genes had 
decreased expression. This bias was highly pronounced in 
the volcano plot (Fig. 2A). In hierarchical clustering, PAS 
and normal placenta were clearly classified by gene expres-
sion patterns, and the sample number of each specimen is 
shown in parentheses. However, samples No. 1 and 2 were 
classified into different clusters within the PAS cluster, even 
though they were from the same patient. This result suggests 
site-specific heterogeneity of gene expression even within 
placenta.

The genes from the highest to lowest fold change were 
compared under various conditions and are summarized in 
Table 2 and Supplementary Fig. 1. The upper part of the 
table compares normal placenta and PAS while the lower 
part compares placenta increta and percreta. Notably, all of 
the genes with low expression in PAS were placenta-specific 
genes, and four of them belonged to the PSG family. A com-
parison of placenta increta and percreta revealed placenta-
specific gene changes. Notably, gradual downregulation of 

Fig. 2  Profiling of variable genes in PAS from normal placenta. A 
Volcano plot of gene expression analysis. Genes showing significant 
differences are displayed as a volcano plot (|FC|> 1.2; p < 0.05). B 

Hierarchical clustering of genes. Hierarchical clustering clearly sepa-
rated the two groups, normal placenta and PAS
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PSG6 was observed from placenta increta to percreta, sug-
gesting that its expression changes with disease severity.

Gene expression enrichment of biological processes 
and related diseases in PAS

As mentioned above, expression changes in placenta-
specific genes such as those of the PSG family tended 
to be decreased in the PAS group. Therefore, we per-
formed enrichment analysis of the genes with decreased 

expression in the PAS group (FC <  − 1.2; p < 0.05). The 
results of term enrichment analysis are shown in Fig. 3A. 
The top-ranked terms were cellular protein catabolic pro-
cess, female pregnancy, autophagy, and metabolism of 
lipids, which are mainly related to response to invasion 
and stress. Figure 3B shows the results of disease-related 
genes using the DisGeNET database [21]. The top-ranked 
diseases were choriocarcinoma and pre-eclampsia and 
the results indicated that the genes changed in PAS were 
linked to the regulation of choriogenesis and invasion.

Table 2  List of genes showing increased variability with placental invasion

Control vs PAS PAS avg (log2) Control 
avg 
(log2)

Fold change p value Refseq number Gene symbol Description

High expression in PAS 4.11 2.85 2.39 0.0229 NM_001127173 CADM3 Cell adhesion molecule 
3

5.71 4.64 2.1 0.0016 NM_003246 THBS1 Thrombospondin 1
3.23 2.4 1.77 0.0054 NM_001145346 RBMXL3 RNA-binding motif pro-

tein, X-linked-like 3
6.18 5.36 1.77 1.71E-02 NM_003525 HIST1H2BI Histone cluster 1, H2bi

Low expression in PAS 4.13 9.12  − 31.68 0.0003 NM_001184825 PSG1 Pregnancy-specific beta-
1-glycoprotein 1

6.07 10.07  − 16.05 0.0004 NM_001031850 PSG6 Pregnancy-specific beta-
1-glycoprotein 6

3.12 7.04  − 15.13 0.0002 NM_001301707 PSG9 Pregnancy-specific beta-
1-glycoprotein 9

3.54 7.45  − 15.08 0.0005 NM_001130014 PSG5 Pregnancy-specific beta-
1-glycoprotein 5

1.79 5.44  − 12.56 3.11E-05 NM_013268 LGALS13 Lectin, galactoside-
binding, soluble, 13

Increta vs percreta Percreta Avg 
(log2)

Increta 
Avg 
(log2)

Fold change p value Refseq number Gene symbol Description

High expression in 
percreta

3.46 1.7 3.38 0.0006 NM_001006933 TCEAL3 Transcription elongation 
factor A (SII)-like 3

2.84 1.75 2.12 0.0081 NM_005557 KRT16 Keratin 16, type I
2.03 0.97 2.07 0.0186 NM_005747 CELA3A; CELA3B Chymotrypsin-like 

elastase family, mem-
ber 3A; chymotrypsin-
like elastase family, 
member 3B

3.43 2.47 1.94 0.0153 NM_001030287 ATF3 Activating transcription 
factor 3

2.39 1.54 1.81 0.0223 NM_203400 RPRML Reprimo-like
Low expression in 

percreta
5.49 7.68  − 4.54 0.0461 NM_001031850 PSG6 Pregnancy-specific beta-

1-glycoprotein 6
3.96 5.78  − 3.52 0.0295 NM_182832 PLAC4 Placenta-specific 4
1.51 3.05  − 2.91 0.0005 NM_019111 HLA-DRA Major histocompatibility 

complex, class II, DR 
alpha

2.24 3.68  − 2.7 0.0368 NM_018327 SPTLC3 Serine palmitoyltrans-
ferase, long chain base 
subunit 3

4.07 5.42  − 2.55 0.0159 NM_002775 HTRA1 HtrA serine peptidase 1
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Different PSG6 expression pattern 
in the syncytiotrophoblast in PAS

Because PSG6 is secreted from the syncytiotrophoblast, 
we performed immunohistochemical staining with hCG to 
check the development of the syncytiotrophoblast in PAS. 
hCG expression was clearly higher in placenta percreta than 
in normal placenta, suggesting trophoblast overgrowth in 
PAS (Fig. 4). Immunostaining for PSG6 in the same speci-
mens showed a marked decrease in PSG6 expression in the 

placenta percreta specimen, as in the microarray results. 
In addition, the expression of PSG6 tended to be lower in 
PAS than in the control group, although there were some 
cases of high expression in placenta increta (Case 3, Sample 
4) and percreta (Case 5, Samples 7 and 8) (Fig. 5A). The 
immunoreactivity score (IRS) of PSG6 showed a decrease in 
progress of placental invasion (control: 2.60 ± 0.10, increta: 
2.45 ± 0.35, percreta: 1.92 ± 0.26). The IRS was significantly 
lower in percreta specimens compared to control specimens 

Fig. 3  Functional enrichment analysis of mRNA expression in 
PAS. A Enriched terms across dysregulated gene lists. Result of 
term enrichment analysis in dysregulated genes in PAS (FC <  − 1.2, 
p < 0.05) using the Metascape database. B Summary of enrichment 

analysis in DisGeNET. Enrichment analysis using the DisGeNET 
database revealed the related diseases with variable genes in PAS 
from normal placenta
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(Fig. 5B). However, there was no significant difference in 
scores between control specimens and increta specimens.

Discussion

In this study, we performed microarray transcriptome anal-
ysis using placenta increta and percreta specimens and 

Fig. 4  Development of the 
syncytiotrophoblast in PAS and 
PSG6 expression. Immunohis-
tochemical staining of FFPE 
control placenta (A, C; Case 6, 
Sample 9) and placenta percreta 
(B, D; Case 1, Sample 1) are 
shown. Images A and B were 
stained for hCG and C and 
D were stained for PSG6, as 
labeled. All photomicrographs 
were taken at × 200 magnifica-
tion

Fig. 5  PSG6 expression in whole placental specimens. A Immuno-
histochemical staining for PSG6 of PAS and control specimens. All 
FFPE placental specimens analyzed in microarray were immunohis-
tochemically stained with PSG6 monoclonal antibody. The images 
are labeled with each sample number and grouped into control, per-

creta, and increta. All photomicrographs were taken at × 200 mag-
nification. B Quantitative analysis of PSG6 intensity. Violin plot of 
immunoreactivity score (IRS) of PSG6 immunohistochemical stain-
ing. IRS of PSG6 in each PAS status were statistically analyzed by 
student’s t tests
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confirmed that there were significant changes in various 
placenta-specific genes. The main purpose of this study 
was to investigate diagnostic biomarkers for PAS, and 
we were able to extract PSG family members, especially 
PSG6, as candidates that can be detected in maternal blood 
[14, 16]. In addition to the placenta-specific genes, various 
other genes related to PAS mechanisms were also identi-
fied by transcriptome analysis. The terms cellular protein 
catabolic process, autophagy, and metabolism of lipids 
were significantly extracted by enrichment term analy-
sis (Fig. 3A). All of these terms are associated with cell 
responses to stresses such as hypoxia and invasion. Loss 
of autophagy in a trophoblast cell line has been reported 
to markedly reduce cell invasion and vascular remodeling, 
especially under hypoxic conditions [22, 23]. The results 
of term enrichment analysis suggested that excessive 
trophoblast invasion may result in physiological inhibi-
tory control of the advanced invasive region of the adher-
ent placenta.

Although the members of the PSG family are some of the 
most abundantly expressed proteins in the placenta and have 
been reported since the 1970s [14], their function remains 
unclear. A total of 11 PSG family genes have been reported 
in humans. All of the PSG family are members of the immu-
noglobulin (Ig) superfamily and are clustered in a very short 
region on the long arm of chromosome 19 [15, 24]. How-
ever, most reports on PSGs are limited to PSG1. For PSG6, 
which was identified here, reports have suggested an associa-
tion with the prognoses of stomach adenocarcinoma [25] and 
gestational diabetes [26], but no individual function has been 
reported. We also constructed a PSG6 overexpressed chorio-
carcinoma cell-line and examined changes in cell invasive 
ability. However, no significant difference was observed in 
the matrigel invasion assay when compared to the mock con-
trol (data not shown). PSG6 does not appear to be a direct 
regulator of cell invasion, at least in choriocarcinoma cells. 
The members of the PSG family are highly homologous, and 
PSG1 has been suggested to have domain-specific functions 
[27, 28]. Many members of the PSG family, including PSG1 
and PSG6, are composed of four domains—N, A1, A2 and 
B2—and may exhibit similar traits [15].

As one of the pathogenic mechanisms of PAS, extensive 
neovascularization stands out [10]. Uteroplacental vascu-
lar remodeling failure is a contributor to early-onset preec-
lampsia, which can lead to placental ischemia and various 
conditions such as intrauterine fetal growth restriction [29]. 
In contrast, overexpression of angiogenesis-related factors 
such as VEGF and Ang-2 has been identified in PAS [30]. In 
addition, sFlt-1, which is upregulated in early onset preec-
lampsia with inefficient placental invasion [31], is down-
regulated in placenta increta and percreta [32]. Therefore, 
preeclampsia and PAS may be considered polar conditions 
in placental angiogenesis. Although there are only a few 

reports on the PSG family in relation to placental angio-
genesis, administration of PSG1 increases the expression 
of VEGF-A via increased expression of TGF-β1 [33]. In 
addition, the B2 domains of PSG1, PSG6, and PSG9 induce 
angiogenesis in endometrial and trophoblastic cell lines 
[27]. In the clinical situation, there are reports that PSG1 
is decreased in preeclampsia [34] and that it is associated 
with small-for-gestational-age fetuses [35], indicating the 
importance of the PSG family in placental vascularization. 
In the term enrichment analysis in this study, preeclampsia 
was the second most relevant disease (Fig. 3B), strongly 
suggesting that the disease mechanism of PAS is partially 
shared with that of preeclampsia.

We also assume that the PSG family may be related to 
the pathogenesis of PAS in terms of immunological regula-
tion. Decidual natural killer (dNK) cells are thought to regu-
late immunological tolerance during trophoblast invasion 
in early-phase pregnancy [36]. In addition, dNK cells have 
been found to be significantly decreased in intraoperative 
decidual biopsy of PAS [37]. Therefore, loss of function 
of dNK may be one of the important factors in trophoblast 
overinvasion in PAS. dNK cell activity has been suggested 
to be decreased by elevated TGF-β1 in preeclampsia [38]. 
On the other hand, PSG1 forms a complex with TGF-β1 [39] 
and also activates the latent isoforms of TGF-β1 and -2 [28]. 
Therefore, we believe that PSG may also regulate tropho-
blast invasion via TGF-β1-mediated regulation of dNK cell 
activity in PAS.

In the future, we must consider the expression level of 
PSG in the serum when applying these results to clinical 
practice. Although the 11 PSG family members have a high 
degree of homology [15], it is not clear whether the anti-
bodies [13] used in older studies were able to classify them 
adequately [14]. The expression level of each PSG mRNA 
depends on the stage of pregnancy [40], but the actual course 
of the PSG level during pregnancy is not yet clear. Although 
PSG1 can be detected in serum, validation of other PSG fam-
ilies is needed. However, cell-free mRNA of placental origin 
can be identified in maternal blood [16] and it has been sug-
gested that these placental-specific mRNAs are increased in 
maternal blood in PAS patients [41]. These mRNAs include 
PSG1, -2, -3, -5, -6, and -9. If PSG6 is chosen as a diagnostic 
biomarker, it will be possible to establish a more exact cutoff 
value using cell-free mRNA of maternal blood when we 
could not establish it as a serum protein marker. However, 
there is an important report regarding cTB cells captured 
using NanoVelcro chips [13]. The authors showed that the 
gene expression of PSG1, -2, -3, and -11 was upregulated 
in the PAS group when compared with the normal placental 
control in cTB cells [13]. Our transcriptome analysis found 
the opposite results regarding the expression level of PSG1. 
This indicates that the gene expression of cTB cells and 
of locally invaded placenta may be different. Because gene 
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expression is often different between metastasis sites and 
primary sites of cancers, care is also required when circulat-
ing cells and cell-free RNA are being assessed in PAS.

The strength of this study is that the specimens were 
precisely sampled from the advanced placental invasion 
area. Because the specimens were dissected by macrodis-
section from the placental invasion area into the uterine 
myometrium, we consider our method to be more accurate 
for detecting biomarkers than previous studies. In addition, 
the results of gene enrichment analysis were consistent with 
the characteristics of PAS, suggesting that the targeted gene 
analysis was successful. However, the most important limita-
tion to consider is that the samples used in this analysis were 
FFPE specimens. In general, FFPE specimens are not ideal 
for expression analysis because RNA degradation is more 
advanced than in frozen specimens. Nonetheless, a previous 
report compared the microarray results of FFPE and frozen 
specimens and showed a correlation coefficient of 0.8 or 
better [42]. Although the RIN value was reduced to about 2, 
as in the present study (Table S1), the specimens seemed to 
provide sufficient analytical results. Therefore, we believe 
that the results of the present study are also valuable for the 
precise analysis of PAS.

Conclusions

The PSG family is very promising as potential diagnostic 
biomarkers of PAS. The PSG family is also likely to play a 
role in the regulation of placental growth, and further func-
tional analysis is warranted regarding therapeutic targets.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00795- 023- 00371-y.
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