甲第1494号

SAPPORO MEDICAL UNIVERSITY INFORMATION AND KNOWLEDGE REPOSITORY

Title	Mechanism of central hypopnoea induced by organic phosphorus poisoning.
論文題目	(有機リン中毒における中枢性呼吸抑制の機序)
Author(s) 著者	野村, 和史
Degree number 学位記番号	甲第3127号
Degree name 学位の種別	博士(医学)
Issue Date 学位取得年月日	2021-03-31
Original Article 原著論文	Sci Rep. 2020 Sep 28;10(1):15834
Doc URL	
DOI	10.1038/s41598-020-73003-5
Resource Version	Author Edition

1	[Title]
2	Mechanism of central hypopnoea induced by organic phosphorus poisoning
3	
4	[Author names]
5	Kazuhito Nomura*, Eichi Narimatsu, Hiroyuki Inoue, Ryoko Kyan, Keigo Sawamoto, Shuji
6	Uemura, Ryuichiro Kakizaki, Keisuke Harada
7	
8	[Author affiliations]
9	Dept. of Emergency Medicine
10	Sapporo Medical University Hospital
11	16 chome 291 Minami1-jonishi Chuo-ku,
12	Sapporo-shi, Hokkaido 064-0806
13	Japan
14	Correspondence to sufjan_beirut@yahoo.co.jp or kanomura@sapmed.ac.jp
15	
16	Kazuhito Nomura*, Eichi Narimatsu, Hiroyuki Inoue, Ryoko Kyan, Keigo Sawamoto, Shuji
17	Uemura, Ryuichiro Kakizaki, Keisuke Harada
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

37 Abstract

38 Whether central apnoea or hypopnoea can be induced by organophosphorus poisoning remains 39 unknown to date. By using the acute brainstem slice method and multi-electrode array system, we established a paraoxon (a typical acetylcholinesterase inhibitor) poisoning model to 40 41 investigate the time-dependent changes in respiratory burst amplitudes of the pre-Bötzinger 42 complex (respiratory rhythm generator). We then determined whether pralidoxime or atropine, 43 which are antidotes of paraoxon, could counteract the effects of paraoxon. Herein, we showed 44 that paraoxon significantly decreased the respiratory burst amplitude of the pre-Bötzinger 45 complex (p < 0.05). Moreover, pralidoxime and atropine could suppress the decrease in amplitude 46 by paraoxon (p < 0.05). Paraoxon directly impaired the pre-Bötzinger complex, and the findings 47 implied that this impairment caused central apnoea or hypopnoea. Pralidoxime and atropine could 48 therapeutically attenuate the impairment. This study is the first to prove the usefulness of the 49 multi-electrode array method for electrophysiological and toxicological studies in the mammalian 50 brainstem. 51 52 53

54

55 Introduction

56 The pre-Bötzinger complex (preBötC) in the ventrolateral lower brainstem is essential for the 57 formation of the unconscious breathing rhythm in mammals [1,2]. This is because the cyclic burst 58 excitation generated from preBötC synchronizes with the respiratory rhythm through phrenic 59 nerve firing and the diaphragmatic contractions, and destruction of preBötC causes the 60 disappearance of the rhythm. Periodic respiratory burst excitation has also been confirmed from 61 an island specimen derived by isolating preBötC in an island shape to block input from other 62 neurons [2]. PreBötC is thus considered the core and origin of respiratory rhythm formation. 63 Although numerous studies on preBötC and the related regions were previously conducted, in 64 vitro experiments using thin slices (i.e. respiratory slices) containing the preBötC region are most 65 appropriate to discuss the pharmacological responses limited to the preBötC region. The preBötC 66 receives ascending or descending signals from different regions [3,4,5] and causes rhythm 67 variation according to the signals. However, respiratory slices can block these signal inputs, 68 thereby enabling the verification of preBötC behaviour alone. Respiratory rhythm abnormalities are often observed with organophosphorus cholinesterase inhibitor poisoning [3,6,7,8,9]. 69 70 Peripheral and central mechanisms are involved in this phenomenon. However, the central 71 mechanism develops in the early stage and is a highly lethal pathological condition accompanied 72 by severe consciousness disorder [8,9]. In some in vivo studies with rodents, central apnoea or

73	hypopnoea was reported to occur when organophosphorus drugs were administered within or
74	nearby the preBötC region [7,10,11]. Further, they were previously confirmed that
75	organophosphorus drugs cause central apnoea or hypopnoea. Although respiratory motion, which
76	involves the reduction in respiratory rate and tidal volume, was evaluated in those studies, the
77	changes in preBötC electrical activity have yet to be reported. In a similar study, a reversible
78	cholinesterase inhibitor, physostigmine, was administered to respiratory slices and the changes in
79	preBötC electrical activity were observed. According to the study results, the activity of preBötC
80	was generally increased by physostigmine administration [12]. Because respiratory exercise
81	should be activated in response to increased preBötC activity, the findings of this in vitro study
82	[12] do not agree with those of the above-mentioned in vivo study [6,7,10,11]. Further, as there
83	are no study reports that clarify this inconsistency, the pathology of central apnoea or hypopnoea
84	by organophosphorus cholinesterase inhibitors remains unknown. To resolve this inconsistency
85	and elucidate the mechanism of central apnoea or hypopnoea induced by organophosphorus drugs,
86	we conducted an <i>in vitro</i> neuro-electrophysiological experiment using respiratory slices from
87	juvenile rats.
88	Results
89	In the groups respectively administered recording artificial cerebrospinal fluid (rACSF) alone

90 for 60 min (n = 6) and 80 min (n = 6), a significant difference in the endpoints (burst amplitude,

91	burst frequency, and burst duration) was not found when the control value obtained at the 20 th min
92	was compared to the values obtained at the 60 th and 80 th min (Fig. 1). The 3rd phase for measuring
93	the maximum effective values was shifted by 20 min between the simultaneous treatment group
94	and the pre/post-treatment group (see protocol section). We performed multiple comparisons for
95	amplitude, duration, and frequency among the 3 groups: control value (20th min), 40th min, and
96	60th min. However, no significant difference was observed.
97	Effects of Paraoxon (Fig. 2, 3, Table 1)
98	Paraoxon (Pox) is a typical and irreversible acetylcholinesterase inhibitor. A total of 30 rats were
99	employed in the experiment with the Pox alone group. The dose concentration of Pox was 10 μ M.
100	The burst amplitude of preBötC significantly decreased at the maximum effective value (Pmax:
101	$80.3 \pm 11.0\%$, $p < 0.05$), however, there was no difference relative to the control in Pend and Last
102	(Fig. 2, 3a). Additionally, the burst amplitude of hypoglossal nucleus (XII) significantly decreased
103	at the maximum effective value (Pmax: $82.0 \pm 17.6\%$, $p < 0.05$), but significantly increased in the
104	end of 3^{rd} phase in Table 1 (Pend: 145.2 ± 68.4%, $p < 0.05$) (Fig. 2, 3d). No difference was
105	identified relative to the control value in the end of 4 th phase in Table 1 (Last in Fig. 3d). Burst
106	duration did not show any significant difference in preBötC throughout the process (Fig. 3b);
107	however, a significant increase with XII in Pend (114.1 \pm 23.0%, $p < 0.05$) was found as well as
108	an increase in Last (114.6 \pm 26.9%, $p < 0.05$) (Fig. 3e). Burst frequency significantly increased

110

111

with the maximum effective value (Pmax in Fig. 3c, f) in both preBötC and XII (preBötC: 143.0 \pm 41.3%, p < 0.05; XII: 139.2 \pm 42.0%, p < 0.05) and increased in the end of 4th phase (Last in Fig. 3c, f) (preBötC: 123.8 \pm 19.4%, p < 0.05; XII: 122.8 \pm 22.0%, p < 0.05).

112 Effects of Pralidoxime (Fig. 4, Table 1)

Pralidoxime (PAM) is an oxime and representative antidote against organophosphorus drugs. A total of 10 rats were used in the pre-treatment group experiment. Regarding the maximum effective value when Pox (10 μ M) and PAM (100 μ M) were administered (3rd phase in Table 1),

- 116 there was no significant difference in burst amplitude (Fig. 4a, d), burst Duration (Fig. 4b, e), or
- 117 burst frequency (Fig. 4c, f) for preBötC and XII compared to the control.

118 A total of 12 rats were used in the simultaneous treatment experiment. With regard to the 119 maximum effective value when Pox (10 µM) and PAM (100 µM) were administered simultaneously (3rd phase in Table 1), the burst amplitudes of preBötC and XII decreased 120 121 significantly (preBötC: 88.9 \pm 5.5%, p < 0.05; XII: 90.6 \pm 7.0%, p < 0.05). However, the 122 amplitude was significantly higher in the simultaneous treatment group than the maximum 123 effective value of Pox alone, as evidenced by the F test and unpaired t-test (preBötC: $80.3 \pm 11.0\%$ 124 vs $88.9 \pm 5.5\%$, p < 0.05; XII: $82.0 \pm 17.6\%$ vs $90.6 \pm 7.0\%$, p < 0.05) (Fig. 4a, d). There was no 125 significant difference in the burst duration (Fig. 4b, e) or the frequency (Fig. 4c, f) of preBötC 126 and XII compared to the control.

127 A total of 10 rats were used in the post-treatment group experiment. Regarding the maximum 128 effective value when Pox (10 μ M) and PAM (100 μ M) were administered (3rd phase in Table 1), 129 there was no significant difference between burst amplitude, duration, and frequency for preBötC 130 and XII relative to the control values.

131 Effects of Atropine (Fig. 4, Table 1)

132 A total of 11 rats were used in the pre-treatment group experiment. Regarding the maximum 133 effective value when Pox (10 µM) and atropine (1 µM) were simultaneously administered (3rd 134 phase in Table 1), burst amplitude did not differ from the control in preBötC (Fig. 4a); however, 135 a significant decrease in XII ($70.2 \pm 15.0\%$, p < 0.05) (Fig. 4d) was observed relative to the control. 136 Compared to the Pox alone group by the F test and unpaired t-test, no significant difference was 137 observed. A significant difference in burst duration was observed for preBötC (71.2 \pm 19.6%, p < 138 0.05) (Fig. 4b) but not XII (Fig. 4e). There was a significant difference in burst frequency for both 139 preBötC and XII (preBötC: $160.5 \pm 47.8\%$, p < 0.05; XII: $139.7 \pm 50.9\%$, p < 0.05) (Fig. 4c, f). 140 A total of 9 rats were used in the simultaneous treatment experiment. Regarding the maximum 141 effective value, when Pox (10 µM) and atropine (1 µM) were simultaneously administered (3rd 142 phase in Table 1), there was no difference in burst amplitude between preBötC and control (Fig. 143 4a); however, a significant difference relative to XII ($80.8 \pm 12.3\%$, p < 0.05) was found (Fig. 4d). 144 Based on the F-test and unpaired t-test, no significant difference relative to the Pox alone group

145 was found. There was no significant difference in burst duration in both preBötC and XII (Fig. 146 4b, e). Additionally, burst frequency was significantly different for preBötC (142.1 \pm 27.2%, *p* <

- 147 0.05) (Fig. 4c) but not for XII relative to the control (Fig. 4f).
- 148 A total of 11 rats were used in the post-treatment group experiment. Regarding the maximum
- 149 effective value when Pox (10 μ M) and atropine (1 μ M) were simultaneously administered (3rd
- 150 phase in Table 1), there was no difference in burst amplitude or frequency relative to the control
- values in both preBötC and XII, except for the duration of preBötC (77.8 \pm 16.4%, *p* < 0.05) (Fig.
- 152 4b).

161

153 Effects of physostigmine (Fig. 4, Table 1)

A total of 9 rats were used in the experiment for the group administered physostigmine alone (3^{rd} phase in Table 1). When the maximum effect of physostigmine (100 µM) was exerted, the burst amplitude of preBötC and XII decreased significantly (preBötC: 79.1 ± 9.1%, p < 0.05; XII: 78.0 ± 13.8%, p < 0.05) (Fig. 4a, d). Both preBötC and XII exhibited no difference in burst duration relative to the control. The burst frequency significantly increased in preBötC and XII (preBötC: 184.1 ± 54.3%, p < 0.05; XII: 164.2 ± 58.3%, p < 0.05) (Fig. 4c, f). **Discussion**

162 involving the hippocampus, retina, myocardium, and cultured cells **[13,14]**; however, a prior

The multi-electrode arrays method (MEA method) is widely used in electrophysiology studies

163	report of its use with the respiratory centre has not been published. The MEA method has the
164	following advantages: (1) It does not require a Faraday cage because it is insulated from the
165	influence of external electrical noise. (2) If researchers just apply drugs in the perfusion solution
166	of the MEA system, they can perform pharmacological experiments. (3) High flow rate perfusion
167	of solutions often moves electrodes (e.g. needle electrodes) and causes experimental failure when
168	using the classical method. Meanwhile, it is easier to perform experiments successfully because
169	the MEA electrodes are immovable. (4) In the classical method, electrodes inserted into the
170	respiratory slice cause tissue damage. When using the MEA method, only close attachment of the
171	slice and electrodes is needed. The MEA method causes minimal tissue damage and can provide
172	data from a relatively healthy state. We not only established a new experimental method using
173	MEA but also demonstrated for the first time its usability for studies in the brainstem region.
174	There are many exclusive MEA products for various tissues, as shown above. They are designed
175	in compliance with the tissue structure (e.g. distance of target sites) and tissue characteristics (e.g.
176	the rounded surface of the retina). They have optimized the numbers, materials, shapes, sizes, and
177	layouts of electrodes to simply measure local field potentials. Exclusive MEA products can
178	measure multiple local field potentials simultaneously in corresponding tissues. Unfortunately,
179	however, an exclusive MEA for the respiratory slice does not exist yet. We used a 60EcoMEA-
180	gr-12 mm because it is the most popular and low-cost option. It permits us to measure local field

potentials in only the ipsilateral preBötC/XII simultaneously because of the electrode layout.
However, if a new special MEA for the respiratory slice is created, it will permit us to more simply
measure local field potentials at the same time in multiple target sites (e.g. bilateral
preBötC/XII/hypoglossal nerve).

185 Based on the *in vivo* findings [3,6,7,10,11], we hypothesized that organophosphorus 186 cholinesterase inhibitors directly impair preBötC. As the administration of Pox was found to 187 significantly reduce the burst amplitude of preBötC, this is the first electrophysiological proof 188 that Pox impairs preBötC activity. We also applied PAM and atropine to a Pox intoxication model 189 and confirmed that they could inhibit the reduction in the preBötC burst amplitude induced by 190 Pox. Such finding demonstrates that PAM and atropine are therapeutically effective for treating 191 the preBötC impairment caused by Pox. Pox is a potent acetylcholinesterase inhibitor that exerts 192 toxicity by binding to the esterified degradation site of acetylcholinesterase to deactivate 193 acetylcholinesterase and create acetylcholine overload [15]. In the muscle tissue of patients with 194 Pox poisoning, muscle fibres are excessively excited due to an extremely high concentration of 195 acetylcholine at the neuromuscular junction. As a result, muscle contraction (fasciculation) 196 continues in a convulsive manner, resulting in hypertonic paralysis. We hypothesized that Pox 197 reaching the brainstem creates acetylcholine overload in the respiratory centre, which causes 198 excitotoxicity and results in functional impairment of preBötC. As a result, a significant decrease

199	in the amplitude of preBötC was confirmed by the administration of Pox, demonstrating that Pox
200	directly impairs preBötC (Fig. 2, 3). In a similar study, a reversible acetylcholinesterase inhibitor,
201	physostigmine, which differs from Pox, was administered to respiratory slices, and the results
202	showed that physostigmine enhanced the overall activity of preBötC [12]. However, this result
203	was observed since the increase in acetylcholine concentration was within the physiological range
204	and was not aimed at poisoning concentration, as done in our study.
205	The unknown toxicity specific to Pox, which is not present in physostigmine, might be the cause
206	of this finding. As a result, we administered physostigmine at a level 10 times greater than that in
207	the previous study. Based on our findings, preBötC burst amplitude decreased and burst frequency
208	increased with physostigmine in a similar manner to that with Pox. In conclusion, if the
209	concentration of acetylcholine through acetylcholinesterase inhibition reaches the toxic range for
210	both Pox and physostigmine, acetylcholine exhibits excitotoxicity and directly impairs preBötC.
211	Some previous study revealed that as the acetylcholine level increases in the brainstem tissue,
212	preBötC excitation becomes high, burst frequency increases, and burst duration deviates from the
213	inspiratory phase and extends to the expiratory phase, ultimately attenuating synaptic binding
214	[12,16]. This finding is consistent with the increased burst frequency caused by Pox
215	administration. PreBötC was also recognized to be formed with several groups of interneurons.
216	Because the neurons are communicating at synapses, they are characterized by cyclic synchronous

burst excitation. The attenuation of synaptic connectivity indicates the loss of synchronization
between neurons. As a result, a burst with a large amplitude is not generated when the excitation
spreads throughout the preBötC, as observed in the healthy state.

220 Because Pox is an irreversible acetylcholinesterase inhibitor, the acetylcholine overload induced 221 by Pox should be maintained. Prior to study initiation, we predicted that the inhibitory effect of 222 preBötC would continue after wash out. In fact, there was an increase in frequency after the end 223 of Pox administration (Fig. 3c). However, the amplitude spontaneously recovered during Pox 224 administration and no difference was found relative to the control values. There is a possibility 225 that desensitization of acetylcholine receptors contributes to the spontaneous recovery (Fig. 2, 3a). 226 Application of physostigmine increases the amplitude, frequency, and duration of the respiratory 227 burst but additional application of 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, M3 228 muscarinic acetylcholine receptor-selective antagonist) was shown to block the increase in 229 amplitude in a previous study [12]. Therefore, it is likely that M3 desensitization resulted in the 230 recovery of the amplitude of preBötC by the reducing excessive excitement of preBötC in the 3rd 231 phase of Pox alone.

232 There are two subtypes of nicotinic receptors in inspiratory neurons, $\alpha 4\beta 2$ and $\alpha 7$; both 233 receptors bind acetylcholine and excite inspiratory neurons **[12,17]**. The application of highly 234 concentrated nicotine-induced respiratory arrest in an earlier study **[18]**. Furthermore, another

235	past study showed higher agonist concentration induces rapid α 7-nicotinic acetylcholine receptor
236	desensitization [19]. Nicotinic receptors might be relevant to Pox-induced central hypopnoea and
237	the recovery from the decreasing preBötC amplitude. Additional studies with Pox and receptor
238	antagonists, e.g. methyllycaconitine (selective α 7-nicotinic receptor antagonist), are needed to
239	confirm this hypothesis. A previous study has shown that Pox influences different transmission
240	pathways, including the promotion of glutamate release from the presynaptic membrane and
241	further inhibition of GABA uptake [20]. Alterations in the metabolic pathways related to
242	excitation transmission within neurons were also recognized. This unexpected result may be due
243	to a series of changes; however, because this study was performed with extracellular potential
244	records alone, the detailed mechanisms between synapses and within cells are unknown. More
245	detailed studies on the intracellular environment, such as studies with patch-clamp techniques,
246	are thus required.
247	PAM and atropine were employed in the therapeutic intervention experiments to demonstrate
248	that the Pox-induced impairment of preBötC was caused by acetylcholine overload. PAM is
249	known to restore acetylcholinesterase activity by breaking the bond between Pox and
250	acetylcholinesterase, thereby causing the degradation of excessive acetylcholine and
251	normalization of neurotransmission [15]. Precedent application of PAM (pre-treatment with

252 PAM) demonstrates a more effective inhibitory action on the binding of acetylcholinesterase and

253	Pox; therefore, excessive excitement of neurons caused by acetylcholine overload is more greatly
254	reduced than with simultaneous treatment with PAM, as has been performed in past studies
255	[21,22]. PAM has greater efficacy in pre-treatment than in simultaneous treatment (Fig. 4a, d).
256	This finding in our study is in agreement with that of past studies. As shown in Fig. 3a, the reduced
257	amplitude of preBötC recovered spontaneously until termination of Pox application (Pend). In
258	post-treatment with PAM, application of Pox alone was started from the 2 nd phase, whereas
259	additional PAM application was started from the 3 rd phase (Table 1). In brief, it is difficult to
260	determine whether PAM contributes to the recovery of preBötC amplitude in the 3rd phase of post-
261	treatment with PAM because spontaneous recovery of the preBötC amplitude occurred until the
0(0	
262	3 rd phase (Table 1, Fig. 3a, 4a).
262	Atropine is a non-specific muscarinic receptor blocker that inhibits excessive excitation of
262 263 264	Atropine is a non-specific muscarinic receptor blocker that inhibits excessive excitation of neurons by inhibiting the binding of acetylcholine to muscarinic receptors when an excessive
262 263 264 265	^{3rd} phase (Table 1, Fig. 3a, 4a). Atropine is a non-specific muscarinic receptor blocker that inhibits excessive excitation of neurons by inhibiting the binding of acetylcholine to muscarinic receptors when an excessive increase in acetylcholine occurs between synapses [12,21,23] . In addition, the administration of
262 263 264 265 266	Atropine is a non-specific muscarinic receptor blocker that inhibits excessive excitation of neurons by inhibiting the binding of acetylcholine to muscarinic receptors when an excessive increase in acetylcholine occurs between synapses [12,21,23]. In addition, the administration of atropine attenuated the decrease in preBötC amplitude, demonstrating that excessive
262 263 264 265 266 267	Atropine is a non-specific muscarinic receptor blocker that inhibits excessive excitation of neurons by inhibiting the binding of acetylcholine to muscarinic receptors when an excessive increase in acetylcholine occurs between synapses [12,21,23] . In addition, the administration of atropine attenuated the decrease in preBötC amplitude, demonstrating that excessive acetylcholine impairs preBötC. As shown in Fig. 4a, atropine (1 μM) suppressed Pox-induced
262 263 264 265 266 267 268	Atropine is a non-specific muscarinic receptor blocker that inhibits excessive excitation of neurons by inhibiting the binding of acetylcholine to muscarinic receptors when an excessive increase in acetylcholine occurs between synapses [12,21,23] . In addition, the administration of atropine attenuated the decrease in preBötC amplitude, demonstrating that excessive acetylcholine impairs preBötC. As shown in Fig. 4a, atropine (1 μM) suppressed Pox-induced preBötC amplitude depression. A previous study addressed that 4-DAMP antagonizes the
 262 263 264 265 266 267 268 269 	^{3th} phase (Table 1, Fig. 3a, 4a). Atropine is a non-specific muscarinic receptor blocker that inhibits excessive excitation of neurons by inhibiting the binding of acetylcholine to muscarinic receptors when an excessive increase in acetylcholine occurs between synapses [12,21,23] . In addition, the administration of atropine attenuated the decrease in preBötC amplitude, demonstrating that excessive acetylcholine impairs preBötC. As shown in Fig. 4a, atropine (1 μM) suppressed Pox-induced preBötC amplitude depression. A previous study addressed that 4-DAMP antagonizes the acetylcholine-induced increase in duration, and the anti-M3 effect of atropine decreases duration

271	effect of atropine. This study focused on antagonistic effect of atropine on Pox-induced amplitude
272	depression; therefore, we set the concentration of atropine at 1 μ M to exert an antagonistic effect.
273	Several inconsistencies were identified between preBötC and XII, except for the significant
274	decrease in burst amplitude after Pox administration. For example, treatment with atropine
275	suppressed the preBötC burst amplitude reduction induced by Pox, but not that of XII (Fig. 4a,
276	d). The anticholinergic effects of atropine may thus be involved or may indicate that neurons in
277	preBötC and XII exhibit different responses to atropine.
278	In previous studies, the authors conducted in vivo or en bloc (brainstem-spinal cord
279	preparation) experiments. They revealed nothing more than the rough pathological mechanism
280	in a wide area of the respiratory centre and did not elucidate electrophysiological changes in
281	preBötC/XII. The physiological function or regulation of the respiratory centre has not been
282	completely elucidated as they are incredibly complicated. Therefore, first of all, it is necessary
283	to elucidate the mechanism of central apnoea or hypopnoea induced by organophosphorus drugs
284	in studies that focus precisely on preBötC because preBötC seems to be the kernel for
285	respiratory rhythm generation and one of culprit lesions in central apnoea or hypopnoea. The
286	present study was carried out in vitro with respiratory slices to clarify Pox-induced direct
287	impairment of the narrow area involving the preBötC. Fleming et al. suggested in their study in
288	an anaesthetized cat that neostigmine suppressed the respiratory centre indirectly by altering

289	afferent inputs and consequently phrenic nerve activity [3]. Their findings suggest that the
290	acetylcholinesterase inhibitor-induced central apnoea or hypopnoea might be caused by a
291	mechanism other than direct preBötC impairment. For example, the Kölliker-Fuse nucleus in
292	the pons or the spinal neural circuit, affect preBötC behaviour [5]. Meanwhile, the respiratory
293	slice is independent of them and exhibits only the autonomous rhythmic bursting of preBötC. In
294	this study with the respiratory slice, we revealed that preBötC is just impaired by Pox, an
295	organophosphorus drug, directly causing a culprit lesion for hypopnoea. Of course, the
296	mechanism of central apnoea or hypopnoea is not completely elucidated, but our findings are
297	highly significant to provide further understanding in the future and contribute further evidence
298	that preBötC is also a target of treatment. For these reasons, this study has great originality and
299	importance. This requires further analysis in the future.
300	Conclusion
301	Based on the findings presented herein, central apnoea or hypopnoea induced by
302	organophosphorus acetylcholinesterase inhibitors was caused by the direct impairment of
303	preBötC. PAM and atropine can be administered as antidotes for Pox. The MEA was demonstrated
304	to be a useful method for <i>in vitro</i> system electrophysiology and pharmacology studies in the
305	brainstem respiratory centre.

306 Methods

Slice Preparation

308 The study began after the study protocol was approved by the Sapporo Medical University Institutional Animal Care and Use Committee. All experiments were conducted in accordance 309 310 with the Regulations for the Management of Laboratory Animals at Sapporo Medical University 311 and relevant guidelines. The experiment was performed with 114 SD newborn rats (age, 0 to 6 312 days-old). First, a low-temperature environment (0-4°C) was produced using a cup of ice. Rats 313 were exposed to ice-cold air in the cup to induce a deep hypothermic state. Because the 314 thermoregulatory ability of neonatal rats is immature, deep hypothermia is easily induced and 315 leads to a deep anaesthesia leaving rats unresponsive to painful stimuli [24]. After rats were 316 deemed unresponsive to pinch stimuli, their forehead and supradiaphragmatic thorax were 317 transected. Subsequently, the brainstem and spinal cord were rapidly isolated as a lump at 0-4°C 318 in sucrose-based artificial cerebrospinal fluid (Sucrose 260 mM, KCl 2.5 mM, CaCl₂ 0.5 mM, 319 MgSO₄ 10 mM, NaH₂PO₄ 1.25 mM, NaHCO₃ 25 mM, Glucose 25 mM, pH 7.4, 385 mOsm/L 320 calculated value) saturated with 95% O₂ and 5% CO₂. The sucrose-based ACSF is helpful in 321 making a 'healthier slice' and is widely used [25]. The anatomical drawing of neonatal rats and 322 previous studies [1,12,26,27] were employed to prepare the slices. From the obex region, 323 transection was performed toward the rostral side with a slicer (NLS-MT; DOSAKA, Osaka, 324 Japan) at a thickness of 400-600 µm (the rostral side was the inferior border of the 4th ventricle)

325	to ensure the XII and the inferior olive nucleus were evident. Thereafter, the acute brainstem slices
326	were prepared. Only one slice was prepared from each rat. The prepared slices were incubated for
327	20 min in rACSF (NaCl 123 mM, KCL 12 mM, CaCl ₂ 2.5 mM, MgSO ₄ 1.2 mM, NaH ₂ PO ₄ 1.2
328	mM, NaHCO ₃ 25 mM, Glucose, 30 mM, pH 7.4, 383 mOsm/L, calculated value, 20-25 °C) with
329	continuous bubbling of 95% O_2 and 5% CO_2 , and transferred to the MEA chamber for recording.
330	Recording and Analysis
331	The positions of PreBötC and XII in the slice were identified using an inverted microscope; the
332	slice was then moved to adhere preBötC/XII to the MEA arrays. The respiratory burst excitation
333	of preBötC was transmitted to XII. As a result, a similar rhythmic burst synchronously appeared
334	in preBötC and XII. If this similar synchronous rhythmic burst was confirmed in both XII and
335	preBötC, it could serve as the rationale for respiratory burst [1,2]. To prove that the rhythmic burst
336	of preBötC was indeed the respiratory burst, simultaneously and constantly recording both
337	potentials of preBötC and XII were critical. The rostral side of the slice preparation was placed
338	on the base of the MEA dish (60EcoMEA-gr-12 mm; Multi Channel Systems) or the recording
339	electrode side. One side of the preBötC and the same side of XII were closely attached to the
340	recording electrode. Gold was used as the electrode material: 100 μ m, diameter; 30 k Ω , resistance;
341	and 60 electrodes with an interval of 700 μ m, arranged in an 8x8 grid fashion. The rACSF
342	maintained at 30°C with a warming device (95% O2 and 5% CO2) was perfused in the MEA

343	chamber at a rate of 10-20 mL/h to immerse the slices in the ACSF. The MEA device (MEA1060;
344	Multi Channel Systems, Reutlingen, Germany) was connected to an AD converter (PowerLab
345	16/30; ADInstruments Bella Vista, Australia) to measure and record the neuronal activity. The
346	recorded neuronal activity was monitored on a computer in real time using an analysis software
347	attached to PowerLab 16/30 (LabChart pro ver 8.1). The measurement data were recorded on a
348	computer and analysed. The following three measurement items were employed: burst amplitude,
349	duration and frequency. All bursts were integrated with a time constant of 0.05 s using LabChart
350	for analysis. Burst frequency was directly measured as the number of bursts per minute. To derive
351	the burst amplitude, the heights from baseline to the peaks of the integrated burst waveform were
352	measured. To determine the burst duration, the time required for the burst to increase and return
353	to baseline was measured. The mean burst amplitude and burst duration were calculated every
354	min, and the ratio was calculated according to a control value of 100%.
355	Drugs
356	Paraoxon (O, O-diethyl O-(4-nitrophenyl) phosphate, organophosphorus acetylcholinesterase
357	inhibitor), PAM (2-pyridine aldoxime methiodide, oxime compound), and atropine (muscarinic
358	receptor nonspecific antagonist) were obtained from Sigma-Aldrich. Because Pox is lipophilic, it
359	was dissolved with dimethyl sulfoxide to achieve solubility in water. Thereafter, it was added to
360	standard ACSF. The concentration of dimethyl sulfoxide in ACSF was adjusted to less than 0.1%.

361 **Protocol**

362 The protocol (Table 1) was derived according to a previous study by the coauthors [21, 28]. 363 Briefly, rACSF was perfused at a high flow rate of 10-20 mL/min using drip infusion sets and a 364 suction pump. The preBötC and XII were confirmed to display regular synchronous burst 365 excitation before recording. The drugs were administered after rACSF was perfused for 20 min 366 from the start of recording. Drug administration was carried out via the addition of the study drugs 367 to rACSF and perfusion for 20 min. After completion of drug administration, rACSF was perfused 368 for an additional 20 min to complete the procedure. In this study, we examined (1) Pox alone, (2) 369 pre-, simultaneous, post-treatment with PAM or atropine, and (3) physostigmine alone. 370 **Statistics** 371 The results are expressed as mean \pm standard deviation. The mean per minute was calculated 372 for each parameter. Control values (Control on the graph) were defined as the 1-min mean 373 immediately before the start of drug administration when rACSF was first perfused for 20 min. 374 Regarding the effect of the study drug, the maximum effect was defined as the lowest 1-min mean 375 amplitude after the start of drug administration. The maximum effective values were amplitude, 376 frequency, and duration. Because the primary objective of this study was to discuss the variation 377 in burst amplitude according to burst duration and frequency, the values when the burst amplitude 378 exhibited the maximum effect were considered to be the maximum effective values. Because XII

379	is a secondary neuron of preBötC, it exhibits similar changes to the variation in the preBötC
380	waveform in a healthy state. However, because XII is a different neuron population, a similar
381	relationship in the pathological condition might not be observed. Therefore, the maximum
382	effective values of XII were only selected for the values of XII without considering the maximum
383	effective values of preBötC and their timing. Mean values for the last one minute of drug
384	administration (Pend in the graph) and the last one minute of wash out (Last in the graph) were
385	calculated. Statistical comparison was performed using one-way analysis of variance (one-way
386	ANOVA), Bonferroni analysis for post hoc testing, F analysis, paired t-test and unpaired t-test.
387	The significance level was defined as a p value < 0.05. Microsoft Office professional plus 2016
388	(Microsoft corporation, Washington, U.S.) was used for analysis.
389	References
390 391 392 393	[1]Smith,J.C., Ellenerger,H.H., Ballanyi,K., Richter,D.W. & Feldman, J.L. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. <i>Science</i> . 254 , 726-729; 10.1126/science.1683005 (1991).
394 395 396	[2]Johnson, S.M., Koshiya,N. & Smith,J.C. Isolation of the kernel for respiratory rhythm generation in a novel preparation: the pre-bötzinger complex "island". <i>J Neurophysiol.</i> 85 , 1772-1776; 10.1152/jn.2001.85.4.1772 (2001).
 397 398 399 400 401 	[3]Fleming, N.W., Henderson T.R. & Dretchen K.L. Mechanisms of respiratory failure produced by neostigmine and diisopropyl fluorophosphate. <i>Eur J Pharmacol.</i> 195 , 85-91; 10.1016/0014- 2999(91)90384-3 (1991).

402 [4]Brockhaus, J., Nikouline, V. & Ballanyi, K. Adenosine mediated suppression of seizure-like 403 activity in the respiratory active brainstem-spinal cord of neonatal rats. Göttingen Neurobiology 404 Report. (eds. Elsner, N., Wehner, R.) 270 (Tieme, 1998). 405 ISBN:086577806X, 9780865778061 406 407 [5] Ikeda, K. et al. The respiratory control mechanisms in the brainstem and spinal cord: 408 integrative views of the neuroanatomy and neurophysiology. J Physiol Sci. 67, 45-62; 409 10.1007/s12576-016-0475-y (2017). 410 411 [6] Chang, F.C., Foster, R.E., Beers, E.T., Rickett, D.L. & Filbert, M.G. Neurophysiological 412 concomitants of soman-induced respiratory depression in awake, behaving guinea pigs. Toxicol 413 Appl Pharmacol. 102, 233-250; 10.1016/0041-008x(90)90023-n (1990). 414 415 [7]Gillis, R.A. et al. Cardiorespiratory effects produced by activation of cholinergic muscarinic 416 receptors on the ventral surface of the medulla. J Pharmacol Exp Ther. 247, 765-773 (1988). 417 PMID:3183970 418 419 [8]Jayawardane, P., Senanayake, N., Buckley, N.A. & Dawson, A.H. Electrophysiological 420 correlates of respiratory failure in acute organophosphate poisoning: evidence for differential 421 roles of muscarinic and nicotinic stimulation. Clinical Toxicology. 50, 250-253; 422 10.3109/15563650.2012.670875 (2012). 423 424 [9]Giyanwani, P.R., Zubair, U., Salam, O. & Zubair, Z. Respiratory failure following 425 organophosphate poisoning: a literature review. Cureus. 9, e1651; 10.7759/cureus.1651 (2017). 426 427 [10]Gaspari, R.J. & Paydarfar, D. Dichlorvos-induced central apnea: effects of selective 428 brainstem exposure in the rat. Neurotoxicology. 32, 206–214; 10.1016/j.neuro.2011.01.005 (2011). 429

[11]Stewart, W.C. & Anderson, E.A. Effect of a cholinesterase inhibitor when injected into the
medulla of the rabbit. *J Pharmacol Exp Ther.* 162, 309-318 (1968).

432 PMID:4875330

434 435 436	[12]Shao, X.M. & Feldman, J.L. Cholinergic neurotransmission in the pre-bōtzinger complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. <i>Neuroscience</i> . 130 , 1069–1081; 10.1016/j.neuroscience.2004.10.028 (2005).
437	
438 439	[13] Taketani, M. & Baudry, M. Advances In Network Electrophysiology: Using Multi-Electrode Arrays. (Springer, 2006).
440	ISBN 978-0-387-25858-4
441	
442 443	[14]Spira, M.E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. <i>Nature Nanotechnology</i> . 8 , 83-94; 10.1038/nnano.2012.265 (2013).
444	
445 446	[15]Marrs, T.C. Organophosphate poisoning. <i>Pharmacol Ther.</i> 58 , 51-66; 10.1016/0163-7258(93)90066-m (1993).
447	
448 449 450	[16]Shao, X.M. & Feldman, J.L. Acetylcholine modulates respiratory pattern: effects mediated by m3-like receptors in prebötzinger complex inspiratory neurons. <i>J Neurophysiol.</i> 83 , 1243-1252; 10.1152/jn.2000.83.3.1243 (2000).
451	
452 453 454 455	[17]Kuwana, S., Saito, K. & Koike, K.A. Effects of nicotine and nicotinic receptor antagonists on the central respiratory control studies in vitro neonatal rat brainstem-spinal cord preparations. <i>B.Edu.Health Sci.UG Univ.</i> 1 , 29-35; doi.org/10.24683/uekusad.1.0_29 (2009). Japanese
456 457	[18]Sasaki, M. et al. Effect of hypercapnea on ventilatory response to intravenous nicotine administration in anesthetized dogs. <i>Respir Physiol.</i> 78 , 177-186; 10.1016/0034-5687(89)90050-
458	9 (1989).
459	
 460 461 462 463 464 	[19]Scheffel, C. et al. Electrophysiological investigation of the effect of structurally different bispyridinium non-oxime compounds on human α 7-nicotinic acetylcholine receptor activity-An in vitro structure-activity analysis. <i>Toxicol Lett.</i> 293 , 157-166; 10.1016/j.toxlet.2017.11.025 (2018).
465	[20]Farizatto K L G & Bahr B A Paraoxon: an anticholinesterase that triggers an excitotoxic
466	cascade of oxidative stress, adhesion responses, and synaptic compromise. <i>Eur Sci J.</i> 13 , 29–37;

10.19044/esj.2017.c1p4 (2017).

468	
469 470 471	[21]Narimatsu, E., Niiya, T., Kawamata, T., Kawamata, M. & Yamakage, M. Effects of atropine and pralidoxime on neuronal actions of paraoxon in rat hippocampal slices. <i>Neurosci Res.</i> 68, 276-284; 10.1016/j.neures.2010.08.008 (2010).
472 473 474 475 476 477	[22]Primožić, I., Odžak, R., Tomić, S., Simeon-Rudolf, V. & Reiner, E.P. Pyridinium, imidazolium, and quinucludinium oximes: synthesis, interaction with native and phosphylated cholinesterases, and antidotes against prganophoshorus compounds. <i>J. Med. Chem. Def.</i> 2 , 1–30 (2004).
478 479 480	[23]Monteau, R., Morin, D. & Hilaire, G. Acetylcholine and central chemosensitivity: in vitro study in the newborn rat. <i>Respir Physiol.</i> 81 , 241-253; 10.1016/0034-5687(90)90049-5 (1990).
481 482	[24]Danneman, P.J. & Mandrell, T.D. Evaluation of five agents/methods for anesthesia of neonatal rats. <i>Lab. Anim. Sci.</i> 47, 386-395 (1997).
483 484	PMID:9306312
485 486 487	[25]Ballanyi, K. In vitro preparations. <i>Modern Techniques In Neuroscience Research</i>. (eds. Windhorst U, Johannson H.) 307-326 (Springer, 1999).Online ISBN:978-3-642-58552-4
488	
489 490 491	[26]Palahnuk, S.B., Abdala, J.A., Gospodarev, V.V. & Wilson, C.G. Preparation of rhythmically- active in vitro neonatal rodent brainstem-spinal cord and thin slice. <i>J Vis Exp.</i> 23 ; 10.3791/58870 (2019).
492	
493 494 495 496	[27]Watanabe, A. & Aoki, M. Responses to central chemostimuli of the medullary respiratory neurons -effect of CO2 and pH changes on the rhythmic bursts of the pre-bōtzinger complex neurons in rat medullary slice preparations <i>The Sapporo Medical Journal.</i> 66 , 293-303; info:doi/10.15114/smi.66.293 (1997). Japanese
470	mo.doi/10.13114/smj.oo.295 (1997). Japanese

[28]Narimatsu, E., Niiya, T., Takada, Y., Takahashi, K., Yamauchi, M. & Yamakage, M. Blockers
of adenosine a1, but not muscarinic acetylcholine, receptors improve excessive extracellular
glutamate-induced synaptic depression. *Neurosci Res.* 75, 103-111; 10.1016/j.neures.2012.11.002
(2013).

502

503 Acknowledgements

- 504 This study was supported by the Japan Society for the Promotion of Science Grant-in-Aid for 505 Young Scientists (B), KAKENHI(Grant No. 17K17060).
- All authors express their deep gratitude to Dr. Akihiko Okabe (Seinan Jo Gakuin University), Dr.
 Yoshihiko Oke (Hyogo College of Medicine), Dr. Hiroshi Onimaru (Showa University), Dr.
 Koichi Takita (Hokkaido University), and Dr. Tadashi Yamanishi (Osaka Women's and
- 509 Children's Hospital) for their professional and constructive advice.

510 Author contributions

- 511 KN (corresponding author) contributed to the design of the study, conducted the experiments,
- 512 analysed and interpreted the data, and wrote the entire manuscript. EN contributed to the
- 513 conception of the study and interpretation of the data. KS, Ryoko Kyan, HI, SU, Ryuichiro
- 514 Kakizaki, and KH contributed to the interpretation of the data and revised the manuscript for
- 515 critical intellectual content.

516 **Competing interest declaration**

- 517 Dr. Nomura reports receiving a grant from the Japan Society for the Promotion of Science for this
 518 study(Grant No.17K17060). Other authors have no conflict of interest, financial or otherwise for
 519 this study.
- 520

521 Figure legends

- Figure 1: Results of the control experiments. a, c: rACSF was perfused for 60 min. The 1-min mean for each item was calculated at the 20th and 60th min. The value at the 60th min relative to that at the 20th min was expressed as a ratio. No statistically significant difference was found by the paired t-test. preBötC: amplitude, p = 0.083; duration, p = 0.36; and frequency, p = 0.56; XII: amplitude, p = 0.89; duration, p = 0.078; and frequency, p = 0.92). a: graph for preBötC, c: graph for XII.
- 528 b, d: rACSF was perfused for 80 min and the 1-min mean for each item was calculated at the
- $529 20^{th}$ and 80^{th} min. The value at the 80^{th} min relative to that at the 20^{th} min was expressed as a ratio.
- 530 No statistically significant difference was found by the paired t-test. (preBötC: amplitude, p =
- 531 0.095; duration, p = 0.25; and frequency, p = 0.78; XII: amplitude, p = 0.47; duration, p = 0.056;
- and frequency, p = 0.24). b: graph for preBötC, d: graph for XII.
- 533 preBötC: pre-Bötzinger complex, XII: hypoglossal nucleus

Figure 2: Changes in waveform after the administration of paraoxon. a: An example of respiratory
bursts in the preBötC and XII around the time of paraoxon administration. The lower subrows
show the integrated bursts. b: An enlarged drawing of the respiratory bursts in the preBötC and
XII at the control values. c: An enlarged drawing of the respiratory bursts in the preBötC and XII
at the time of paraoxon administration. ∫preBötC: integrated row for the preBötC, ∫XII: .integrated
row for XII

541

Figure 3. Effects of paraoxon administration. The changes at each endpoint over time as a ratio to
the control value for the Pox alone group. a: graph for preBötC amplitude, b: graph for preBötC
duration, c: graph for preBötC frequency, d: graph for XII amplitude, e: graph for XII duration, f:
graph for XII frequency.

546 Control: The 1-min mean of each item at the 20th min in the 2nd phase (Table 1) was calculated 547 and defined as the control value. The control value was 100% when the ratio was calculated 548 according to the change over time. Pmax: The values for the maximum effect were defined as 549 burst amplitude, duration, and frequency. The most decline in mean burst amplitude per min 550 occurred at 20 min of paraoxon administration (3rd phase in Table 1). This value was expressed 551 as a ratio relative to the control value. Pend: Paraoxon was perfused for 20 min. The 1-min mean of each endpoint at the 20th minute (the last 1 min of the 3rd phase in Table 1) was calculated and 552 expressed as a ratio relative to the control value. Last: rACSF was perfused for 20 min because 553 554 of wash out (4th phase in Table 1). The mean of each parameter per min at the 20th min was 555 calculated and expressed as a ratio relative to the control value.

*: statistically significant differences by one-way ANOVA and Bonferroni analysis (p < 0.05).

557

Figure 4. Results related to therapeutic intervention and physostigmine administration. The results of The value for the maximum effect of each item relative to that of the control as a ratio for the 4 groups presented in Table 1. a: graph for preBötC amplitude, b: graph for preBötC duration, c: graph for preBötC frequency, d: graph for XII amplitude, e: graph for XII duration, f: graph for XII frequency.

563 Control: The 1-min mean of each item at the 20^{th} min in the 1^{st} or 2^{nd} phase (Table 1) was 564 calculated for each group and defined as the control value. The control value was 100% when the 565 ratio was calculated according to the change over time. Pox alone: The value for the maximum 566 effect in the 3^{rd} phase (Table 1) in the Pox alone group was expressed as a ratio relative to the 567 control value. Physo: The value for the maximum effect in the 3rd phase (Table 1) of 568 physostigmine administration was expressed as a ratio relative to the control value. Pre: The value 569 for the maximum effect in the 3^{rd} phase (Table 1) for the pre-treatment group was expressed as a

- 570 ratio relative to the control value. Sim: The value for the maximum effect value in the 3rd phase
- 571 (Table 1) for the simultaneous treatment group was expressed as a ratio relative to the control
- value. Post: The value for the maximum effect in the 3rd phase (Table 1) in the post-treatment
- 573 group was expressed as a ratio relative to the control value.
- 574 *: statistically significant differences by one-way ANOVA and Bonferroni analysis (p < 0.05).
- 575 †: statistically significant differences by F test and unpaired t-test (p < 0.05).
- 577 Fig.1

Table 1. Summary of the study design used for drug application.

Tables

Table 1. Summary of the study design used for drug application.

Drug application protocol							
Group	1 st phase (20 min)	2 nd phase (20 min)	3 rd phase (20 min)	4 th phase (20 min)			
Pox alone							
Application of Pox		rACSF	Pox	Wash out			
PAM and Pox							
Pre-treatment with PAM	rACSF	PAM	PAM + Pox	Wash out			
Simultaneous treatment with PA	AM	rACSF	PAM + Pox	Wash out			
Post-treatment with PAM	rACSF	Pox	PAM + Pox	Wash out			
ATR and Pox							
Pre-treatment with ATR	rACSF	ATR	ATR + Pox	Wash out			
Simultaneous treatment with Al	ſR	rACSF	ATR + Pox	Wash out			
Post-treatment with ATR	rACSF	Pox	ATR + Pox	Wash out			
Physo alone							
Application of Physo		rACSF	Physo	Wash out			

609 rACSF: recording artificial cerebrospinal fluid warmed to 30°C

610 Pox: paraoxon (10 μM, an acetylcholinesterase inhibitor)

611 PAM: Pralidoxime (100 μM, an oxime)

612 ATR: Atropine (1 μM, a non-selective acetylcholine receptor antagonist)

613 Physo: Physostigmine (100 μM, an acetylcholinesterase inhibitor)

614 Drugs were administered with superfusing rACSF. Wash out was performed with rACSF.

615