

SAPPORO MEDICAL UNIVERSITY INFORMATION AND KNOWLEDGE REPOSITORY

Title 論文題目	Novel antimicrobial activities of a peptide derived from a Japanese soy bean fermented food, Natto, against <i>Streptococcus pneumoniae</i> and <i>Bacillus subtilis</i> group strains (納豆由来ペプチドの肺炎球菌およびサブチリスグループに属するバチラス属細菌に対する新奇な抗菌活性)
Author(s) 著 者	北川,学
Degree number 学位記番号	甲第 2954 号
Degree name 学位の種別	博士(医学)
Issue Date 学位取得年月日	2017-03-31
Original Article 原著論文	札幌医学雑誌 第86巻 第1号
Doc URL	
DOI	
Resource Version	

1	Novel antimicrobial activities of a peptide derived from a Japanese soybean
2	fermented food, Natto, against Streptococcus pneumoniae and Bacillus
3	subtilis group strains
4	
5	Manabu Kitagawa ^{a, b} , Tsukasa Shiraishi ^a , Soh Yamamoto ^a , Ryosuke Kutomi ^a ,
6	Yasuo Ohkoshi ^{a, c} , Toyotaka Sato ^a , Hideki Wakui ^d , Hideaki Itoh ^d , Atsushi
7	Miyamoto ^b , Shin-ichi Yokota ^{a*}
8	
9	^a Department of Microbiology, Sapporo Medical University School of Medicine,
10	Sapporo, Japan.
11	^b Department of Pharmaceutical Health Care and Sciences, Sapporo Medical
12	University School of Medicine, Sapporo, Japan.
13	^c Department of Clinical Laboratory, NTT East Sapporo Hospital, Sapporo,
14	Japan.
15	^d Department of Life Science, Graduate School and Faculty of Engineering
16	Science, Akita University, Akita, Japan.
17	
18	

19	*Corresponding author. Department of Microbiology, Sapporo Medical
20	University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556,
21	JAPAN.
22	
23	<i>E-mail address</i> : <u>syokota@sapmed.ac.jp</u> (S. Yokota).
24	
25	
26	
27	Keywords: Natto, antimicrobial peptide, Streptococcus pneumoniae, Bacillus
28	<i>subtilis</i> , subtilisin
29	

30 ABSTRACT

31We recently isolated a tumoricidal peptide from Natto, a Japanese 32traditional fermented food. In the present study, antimicrobial activity of the Natto peptide was examined. The peptide consisted of 45 amino acid residues, 33 and its structure was predicted to be rich in α -helix. It excreted antimicrobial 34activity only against Streptococcus pneumoniae and Bacillus subtilis group 3536 (B. subtilis, Bacillus pumilus, and Bacillus licheniformis). Lesser antimicrobial activity was observed for *Streptococcus* species other than S. 37pneumoniae. Hemolysate or hemin was required for the antimicrobial 3839activity of the peptide. The Natto peptide damages the cell membrane of B. subtilis. On the other hand, chain morphology was induced in S. pneumoniae, 40 which is naturally diplococcus, during the early phases of the Natto peptide 41treatment; following that the cells were rapidly lysed. This suggested that 42the Natto peptide displayed a novel narrow spectrum of bactericidal activity 43and inhibited cell separation during cell division of S. pneumoniae. 4445

1. Introduction

47	Natto is a traditional Japanese food obtained after fermentation of
48	boiled soybeans by <i>Bacillus subtilis</i> . It is recognized as a healthy food, and a
49	rich source of vitamins, calcium, and various nutrients. Isoflavone, an
50	analogue of estrogen, is derived from soybeans, and it is shown to prevent
51	cerebral and myocardial stroke, breast cancer and prostate cancer (Zaheer
52	and Akhtar, 2015). Lecithin is also derived from soybeans; it is a
53	phospholipid containing unsaturated fatty acids. Lecithin has shown to
54	prevent coronary artery diseases by preventing the deposition of cholesterol
55	and other fats on the vascular endothelium and to prevent liver damages
56	(Nicolosi et al., 2001). Nattokinase is a subtilisin family serine protease
57	derived from <i>B. subtilis</i> . It exhibits a pronounced fibrinolytic activity, and is
58	known as a blood thinner (Sumi et al., 1990; Dabbagh et al., 2014).
59	Dipicolinic acid, which is contained in <i>B. subtilis</i> spores with a high content
60	(approximately 5-15% of dry weight) contributing to the dormancy and
61	germination of spore-forming bacteria (Murrel and Warth, 1965), shows a
62	broad spectrum of antimicrobial activity against bacteria and yeasts (Sumi
63	and Ohsugi, 1999). Natto is the only food containing high levels of

64	water-soluble vitamin K_2 (menaquinone-7). The high vitamin K_2 content of
65	Natto results from fermentation; consequently, vitamin K_2 content in Natto
66	is over 100 times higher than in soybeans (Sakano et al., 1988). Natto,
67	therefore, contains numerous useful substrates for human health derived
68	from the soybeans, <i>B. subtilis,</i> and soybean fermentation products. We were
69	interested in the new beneficial effects of the multifunctional food, Natto, on
70	human health.
71	Recently, we discovered a new peptide (termed "Natto peptide") that
72	has cytotoxicity toward tumor cell lines but not toward normal cell lines
73	(Hatakeyama et al., 2016). Injury of the cell membrane was suggested as a
74	mechanism of this cytotoxicity. Such tumoricidal activity is also displayed by
75	various antimicrobial peptides. One family of such antimicrobial peptides is
76	the defensin family (Suarez-Carmona et al., 2015; Mattar et al., 2016). The
77	defensin family peptides are disulfide-bond-rich cationic peptides found in
78	both vertebrates and invertebrates. In human, α -defensins are mainly
79	produced by neutrophils, and β -defensins are produced by leukocytes and
80	epithelial cells. Another antimicrobial peptide is the cathelicidin family
81	(Wang et al., 2014; Xhindoli et al., 2016). They are α -helix-rich peptide, with

 $\mathbf{5}$

82	basic amino acids present every few residues. They are found in mammals,
83	and are produced by neutrophils, macrophages, and keratinocytes. These
84	cationic peptides display tumoricidal activity like as the Natto peptide and
85	antimicrobial activity against various types of microorganisms, including
86	Gram-positive bacteria, Gram-negative bacteria, and fungi (Sang and Blecha,
87	2008; Suarez-Carmona et al., 2015; Mattar et al., 2016; Xhindoli et al., 2016).
88	Given the above, we were interested in the antimicrobial activity of the
89	Natto peptide.
90	
91	
91 92	2. Materials and Methods
	2. Materials and Methods2.1. Preparation of the Natto peptide
92	
92 93	2.1. Preparation of the Natto peptide
92 93 94	2.1. Preparation of the Natto peptideNatto, which is commercially available, was donated by Yamada
92 93 94 95	 2.1. Preparation of the Natto peptide Natto, which is commercially available, was donated by Yamada Foods (Misato, Akita Prefecture, Japan). Six Natto preparations were
92 93 94 95 96	 2.1. Preparation of the Natto peptide Natto, which is commercially available, was donated by Yamada Foods (Misato, Akita Prefecture, Japan). Six Natto preparations were obtained, generated by different <i>B. subtilis</i> strains. Natto was homogenized

100	was stirred for 30 min at 4°C and centrifuged at 20,000 x g for 15 min at 4°C.
101	The supernatant was collected, and then saturated ammonium sulfate was
102	added at a concentration of 50%. The mixture was stirred for 30 min at 4°C $$
103	and centrifuged at 20,000 x g for 15 min at 4°C. The resulting precipitate
104	[30-50% saturated ammonium sulfate precipitated fraction] was dialyzed
105	against 10 mM Tris-HCl (pH 7.4) for 24 h. The resulting material was
106	precipitated with 25% saturated ammonium sulfate at 4°C, and the
107	supernatant was filtered through a $0.45 \ \mu m$ membrane filter. The filtrate
108	was applied to a column of Butyl-Sepharose High Performance (GE
109	Healthcare Life Sciences, Chalfont St Giles, UK) equilibrated with 10 mM
110	Tris-HCl (pH 7.4) containing 25% saturated ammonium sulfate. The column
111	was successively eluted with 25%, 20%, 15%, 10%, 5% and 2% saturated
112	ammonium sulfate in 10 mM Tris-HCl (pH 7.4). The eluent with 10%
113	saturated ammonium sulfate was dialyzed in 10 mM Tris-HCl (pH 7.4),
114	lyophilized, and used as a Natto peptide preparation. The Natto peptide was
115	yielded approximately 1 g from 500 g of Natto.
116	The purity of the peptide was confirmed by Tris/Tricine-sodium
117	dodecyl sulfate-polyacrylamide gel electrophoresis (Tris/Tricine-SDS-PAGE)

 $\mathbf{7}$

118 (Schagger and von Jagow, 1987) and Coomassie Brilliant Blue (CBB)119 staining.

120

121 2.2. Amino acid sequence of the Natto peptide

122For amino acid sequence determination, the Natto peptide preparation was further purified by column chromatography on 123Wakosil-5C18HG column (Wako Pure Chemical, Tokyo, Japan). The peptide 124was eluted with acetonitrile [linear gradient of 0 to 60% (v/v)]. The fraction 125eluted with approximately 30% acetonitrile was pooled and lyophilized. The 126resulting material was analyzed. Amino acid sequence of the peptide was 127determined using the protein sequencer PPSQ-31B/33B (Shimadzu, Kyoto, 128129Japan).

130

131 2.3. Bacterial strains

B. subtilis, AHU 1035, AHU 1037, AHU 1604, AHU 1615, AHU 1708^T
and AHU 1722, Bacillus cereus AHU 1358, Bacillus licheniformis AHU 1371,
Bacillus megaterium AHU 1373, and Bacillus pumilus AHU 1386 were
obtained from the Research Faculty of Agriculture, Hokkaido University

136	(Sapporo, Japan). <i>B. cereus</i> JCM 2152 ^T , <i>Streptococcus agalactiae</i> JCM 5671 ^T ,
137	Streptococcus mitis JCM 12971 ^T , Streptococcus mutans JCM 5705 ^T ,
138	Streptococcus pyogenes JCM 5674 ^T , Streptococcus salivarius JCM 5707 ^T ,
139	and Streptococcus sanguinis $\rm JCM~5708^{T}$ were obtained from the Japan
140	Collection of Microorganisms, Riken BioResource Center (Tsukuba, Japan).
141	Acinetobacter baumannii ATCC 19606, Escherichia coli ATCC 25922 and
142	ATCC 35218, <i>Lactobacillus fermentum</i> ATCC 9338 ^T , <i>Lactobacillus</i>
143	rhamnosus ATCC 7469 ^T , Pseudomonas aeruginosa ATCC 27853,
144	Staphylococcus aureus ATCC 25923, Streptococcus pneumoniae ATCC 49619,
145	and <i>Haemophilus influenzae</i> ATCC 51907 were obtained from the American
146	Type Culture Collection (Manassas, VA). Lactobacillus plantarum NRIC
147	$1067^{\rm T}$ was obtained from the NODAI Culture Collection Center, Tokyo
148	University of Agriculture (Tokyo, Japan). A. baumannii SRAC2, S. aureus
149	SUNA1 [hospital-acquired methicillin-resistant <i>S. aureus</i> (MRSA)] and
150	SR-581 [community-acquired MRSA], <i>Enterococcus faecium</i> M2483,
151	Enterococcus faecalis HU1 [vancomycin-resistant Enterococcus (VRE)] and
152	M2486, E. coli 7249 (ST131), P, aeruginosa PA103 and 9728, Serattia
153	marcescens SRSM2, S. pneumoniae SR11, MH101 [penicillin-resistant S.

154	pneumoniae (PRSP)], 237 [PRSP] and 442 [mucoid], and Candida albicans
155	SRCA1 and SRCA4 were clinical isolates stocked in our laboratory. S .
156	pneumoniae R6 and P103 [<i>lytA</i> -deficient mutant derived from R6 ($\Delta lytA$)]
157	were kindly provided by Dr. Ernesto Garcia (Centro de Investigaciones
158	Biológicas, CSIC, Madrid, Spain) (Moscoso et al., 2014).
159	
160	2.4. Minimum inhibitory concentration
161	Antimicrobial activity was estimated by minimum inhibitory
162	concentration (MIC) determinations using a broth microdilution procedure
163	basically according to a guideline of the Clinical Laboratory Standards
164	Institute (2015). Briefly, cell suspensions (1 x 10^4 cells/mL) and serially
165	diluted solutions of the Natto peptide were mixed in a 96 well microplate,
166	and cultured at 37°C for 24 h. The basal medium was Mueller-Hinton (MH)
167	broth (Becton Dickinson, Franklin Lakes, NJ) or Todd Hewitt (TH) broth
168	(Becton Dickinson) supplemented with 5% (v/v) horse hemolysate (Nippon
169	Bio-Test Laboratories, Tokyo, Japan).
170	

171 2.5. The combined effect of the Natto peptide and other antibacterial

172 agents

173	Cefditoren and tebipenem were provided by Meiji Seika Pharma (Tokyo,
174	Japan). Clarithromycin was provided by Taisho Pharmaceutical (Tokyo,
175	Japan). Amoxicillin, amikacin, tobramycin, and gentamicin were purchased
176	from Wako Pure Chemical. Levofloxacin was purchased from LKT
177	Laboratories (St. Paul, MN). A combined effect was defined according to the
178	fractional inhibitory concentration (FIC) index deduced from MIC values, as
179	follows: synergistic effect, FIC ≤ 0.5 ; additive effect, FIC $0.6 - 1.0$; no effect,
180	FIC 1.1 -2 ; and antagonistic effect, FIC >2.
181	
182	2.6. The effect of supplements on the antimicrobial activity of the Natto
183	peptide
184	Hemin was purchased from Wako Pure Chemical. Horse serum was
185	from Thermo Fisher Scientific (Waltham, MA). Heat-treated horse
186	hemolysate was prepared by heating at 100°C for 10 min; various
187	concentrations were suspended in TH broth, and then centrifuged at 9,000 x
188	g for 5 min. The supernatant was filtered (0.22 μ m) and used in culture
189	media for MIC measurements. The effect on antimicrobial activity was

190	determined by MIC measurements using the broth microdilution method.
191	Briefly, suspensions of S. pneumoniae R6 cells (1 x 10^4 cells/mL) in TH broth
192	containing serial dilutions of the Natto peptide and serial dilutions of the
193	supplements were cultured at 37°C for 24 h.
194	
195	2.7. The effect of the Natto peptide on bacterial cell growth and survival
196	S. pneumoniae and B. subtilis cells were precultured on TH agar
197	containing 5% (v/v) horse hemolysate at 37°C for 12 h. The cells were then
198	suspended in saline, and used to inoculate TH broth containing 5% (v/v) $$
199	horse hemolysate at an optical density at 625 nm of 0.000625 (approximately
200	1 x 10^5 cells/mL). The Natto peptide was added to the cell cultures at the
201	time of inoculation or 4 h after the inoculation (approximately 1 x 10^7
202	cells/mL). Cell numbers were determined by plating aliquots of the cultures
203	sampled at various times on TH agar containing 5% (v/v) horse hemolysate,
204	and culturing under microaerophilic conditions; the resulting colonies were
205	then counted.
206	
207	2.8. Morphological observations of the Natto peptide treated cells

208	S. pneumoniae and B. subtilis cells (control cells or cells treated with
209	the Natto peptide) were observed by transmission electron microscopy (TEM)
210	after negative staining as previously described (O'Connell Motherway et al.,
211	2011), with minor modifications. The bacterial cells were cultured in TH
212	broth containing 5% (v/v) horse hemolysate at 37°C for 4 h or 8 h. in the
213	presence or absence of the Natto peptide. Cells were fixed with 1% (v/v)
214	glutaraldehyde for 30 min at 4°C. Copper grids (150 mesh; Veco B.V.,
215	Eerbeek, the Netherlands) were floated on the fixed cell suspensions for 10
216	min at room temperature. The grids were washed once for 5 min in 0.02 M
217	glycine-phosphate-buffered saline, and three times for 5 min in ultra-pure
218	water. Negative staining was performed using an EM stainer (Nisshin EM,
219	Tokyo, Japan). The grids were observed using JEOL JEM-1400 TEM (JEOL,
220	Tokyo, Japan) operated at 80 kV.
221	
000	

3. Results

3.1. Characterization of the Natto peptide

225 The Natto peptide was successfully isolated from the active fraction

226	of homogenate of Natto by successive ammonium sulfate precipitation steps	
227	and hydrophobic interaction chromatography (Hatakeyama et al., 2016). The	
228	resulting peptide migrated as a single band of approximately 5 kDa, as	
229	estimated by Tris/Tricine-SDS-PAGE and CBB staining. The Natto peptide	
230	consisted of 45 amino acid residues and had the following sequence;	
231	$\rm NH_2\mbox{-}SMATPHVAGAAALILSKHPTWTNAQVRDRLESTATYLGNSFYYGK\mbox{-}$	
232	COOH. The sequence shared extremely high homology with a sequence near	
233	the C-terminal side of subtilisin family proteins, which are serine proteases	
234	produced by <i>Bacillus</i> species. High, 97.8%, homology with nattokinase of <i>B</i> .	
235	subtilis (GenBank ACJ48969.1) (Supplemental Fig.) and 80.0% homology	
236	with keratinase of <i>B. licheniformi</i> s (GenBank AID16241.1) were observed.	
237		
238	3.2. Antimicrobial activity of the Natto peptide	
239	The antimicrobial activity of the Natto peptide was determined by	
240	MIC measurements with various microorganisms. The MH medium was first	
241	used in the assays, according to the CLSI recommendations. The Natto	
242	peptide showed antimicrobial activity only <i>S. pneumoniae</i> (data not shown).	
243	MIC for <i>S. pneumoniae</i> was determined using MH broth supplemented with	

244	5% (v/v) hemolysate (CLSI, 2015). Next, MIC values were determined using
245	TH broth, a medium more rich than MH broth, supplemented with 5% (v/v)
246	horse hemolysate (Table 1). The Natto peptide displayed antimicrobial
247	activity against <i>S. pneumoniae</i> , including PRSP and mucoid strains, and <i>B.</i>
248	subtilis, B. pumilus, and B. licheniformis, at a concentration of 80 or 160
249	µg/mL. Lesser activity was observed against strains of <i>Streptococcu</i> s species
250	other than <i>S. pneumoniae</i> and against <i>L. fermentum</i> at a concentration of
251	640 or 1,280 μg/mL. The Natto peptide did not display any antimicrobial
252	activity against other Gram-positive bacteria, including <i>B. cereus</i> and <i>B.</i>
253	megaterium, any of the Gram-negative bacteria examined, and <i>C. albicans</i> .
254	Natto peptides obtained from various Natto preparations that were
255	prepared using different soybeans and different <i>B. subtilis</i> strains also
256	displayed specific antimicrobial activity against <i>S. pneumoniae</i> and <i>B.</i>
257	<i>subtilis</i> , however, the activities were different in some instances (Table 2).
258	This indicated that the Natto peptide was typically and commonly present in
259	Natto.
260	

3.3. The combined effect of the Natto peptide and other antimicrobial

agents

263	Next, the combined effect of the Natto peptide and antimicrobial agents
264	was examined. The tested antimicrobials were aminoglycosides (that injure
265	the cell membrane in addition to inhibition of protein synthesis) and drugs
266	frequently used in pneumococcal infections. The antimicrobial agents
267	examined did not affect (synergistically, additively or antagonistically) to the
268	Natto prptide activity, as assessed by the FIC index analysis (Table 3).
269	
270	<i>3.4.</i> Hemin is required for antimicrobial activity of the the Natto peptide
271	Horse hemolysate was required for the occurrence of antimicrobial
272	activity of the Natto peptide in a dose-dependent manner (Table 4). Heat
273	treatment (100°C, 10 min) of horse hemolysate resulted in the aggregation of
274	many proteins present in the hemolysate. The aggregates were removed by
275	centrifugation and filtration. The resulting supernatant retained the ability
276	to support the antimicrobial activity of the Natto peptide. This suggested
277	that heat-stable substance(s) present in the horse hemolysate were required
278	for the antimicrobial activity of the peptide. Horse serum did not alter the
279	antimicrobial activity of the peptide, therefore, blood cell component(s) were

280	subsequently evaluated. Hemin is used as a supplement in MIC	
281	measurements with <i>H. influenzae</i> as the X factor (White and Granick, 1963).	
282	The antimicrobial activity of the Natto peptide against <i>S. pneumoniae</i> was	
283	supported by hemin in a concentration-dependent manner (Table 4). The	
284	amount of hemin required for the occurrence of the antimicrobial activity	
285	was comparable with the amount of heme (5-6 mg/L) in horse hemolysate	
286	required for the occurrence of the antimicrobial activity.	
287		
288	<i>3.5.</i> The effect of the Natto peptide on bacterial cell growth and survival	
289	Survival curves of <i>S. pneumoniae</i> and <i>B. subtilis</i> cell cultures in the	
290	presence or absence of the Natto peptide were examined. The growth of S .	
291	pneumoniae was similar during the early phases of growth in the presence	
292	and absence of the Natto peptide (Fig. 1). When high cell numbers were used	
293	in the inoculum (approximately 10 ⁷ cells/mL), the cultures reached	
294	maximum cell density (approximately 10 ⁸ cells/mL) regardless of the	
295	presence of the Natto peptide; the number of viable cells then decreased (Fig.	
296	1-A). The rate of the decrease of viable cell numbers was markedly higher in	
297	the presence of the Natto peptide than in the absence of the peptide. When	

298	low cell numbers were used in the inoculum (approximately 10^5 cells/ml), in
299	the absence of the peptide, the culture reached maximum cell density
300	(approximately 10^8 cells /ml) after 8 h, following which the viable cell
301	numbers decreased. On the other hand, in the presence of the peptide, the
302	culture did not reach maximum cell nombers and the number of viable cells
303	rapidly decreased 2 h after the addition of Natto peptide (Fig. 1-B). These
304	results suggested that <i>S. pneumoniae</i> cells initially grew normally in the
305	presence of the Natto peptide; the growth was then terminated and the cells
306	rapidly lysed. The rapid decrease of viable <i>S. pneumoniae</i> cells seemed to be
307	associated with autolysis. Consequently, the contribution of LytA, the main S .
308	pneumoniae specific autolysin, to the decrease of viable cells in late phase
309	was examined, using the <i>lytA</i> -deficient mutant P103. The rate of viable cell
310	number decrease in the presence of the Natto peptide was lower in P103
311	than in the parent strain R6 (Fig. 1-B and C). This indicated that the
312	autolysis caused by LytA enhanced the bactericidal rate, but it was not
313	essential for the antimicrobial activity of the Natto peptide.
314	The survival curves of <i>B. subtilis</i> cells also indicated that viable cell
315	numbers rapidly decreased in the presence of the Natto peptide (Fig. 2). The

316	decrease occurred immediately after the addition of the Natto peptide, and
317	seen when both high (approximately 10 ⁷ cells /mL; Fig. 2-A) and low
318	(approximately 10 ⁵ cells /mL; Fig. 2-B) inocula were used. This suggested
319	that the antibacterial action of the Natto peptide differed in S. pneumoniae
320	and <i>B. subtilis</i> .

322 3.6. Morphological observations of cells treated with the Natto peptide

S. pneumoniae cell morphology was examined by TEM after negative 323staining (Fig. 3). In the absence of the Natto peptide, *S. pneumoniae* cells 324looked like typical diplococci (Fig. 3-A). The cells formed chain-like structure 325326 4 h after the addition of the Natto peptide (Fig. 3-B). These results suggested 327that the cells failed to separate after cell division in the presence of the peptide. After 8 h of culture, the observed cell lysis was more pronounced in 328than the absence of the Natto peptide (Fig. 3-C and D). 329 the presence In the case of *B. subtilis* (Fig. 4), localized cell membrane damages 330 and cell swelling were observed 4 h after that Natto peptide addition (Fig. 4 331332C). After 8 h when no viable cells were seen, the cells completely lysed (Fig. 4

333 D).

336 4. Discussion

337	Recently, we reported a tumoricidal activity of the Natto extract;
338	approximately 5 kDa peptide was identified as the active component
339	(Hatakeyama et al., 2016). As shown here, the peptide consisted of 45 amino
340	acid residues, and shared extremely high homology with the C-terminal
341	region of a subtilisin family serine protease, Nattokinase produced by B .
342	subtilis. The structure of the peptide is probably rich in α -helix deduced from
343	secondary structure predictions and the presence of basic amino acid
344	residues appearing every few residues. Such structural characteristics are
345	found in several types of antimicrobial peptides (Yount et al., 2006). Typically,
346	the characters were found in cathelicidin family antimicrobial peptides
347	(Wang et al., 2014; Xhindoli et al., 2016). The cathelicidin antimicrobial
348	peptides generally have broad spectrum of antimicrobial activity and are
349	effective against multidrug-resistant bacteria (Zanetti et al., 2002; Sang and
350	Blecha, 2008). They also show cytotoxicity toward tumor cell lines, but not
351	toward normal cell lines, similarly to the Natto peptide. Thus, we anticipated

352	that the Natto peptide possesses a broad-spectrum antimicrobial activity
353	with broad spectrum, similarly to the antimicrobial peptides.
354	Unexpectedly, we found a novel antimicrobial activity of the Natto
355	peptide. The spectrum of activity was very narrow, namely, only against S .
356	pneumoniae and several Bacillus strains (Table 1). Little antimicrobial
357	activity was observed against $Streptococcus$ spp., including group A (S.
358	pyogenes) and group B (S. agalactiae) streptococci and oral viridans
359	streptococci. The Natto peptide seemed to potentially possess an
360	antimicrobial activity against streptococci, and most pronouncedly against S .
361	pneumoniae. On the other hand, the Natto peptide showed antimicrobial
362	activity against <i>B. subtilis, B. licheniformis</i> , and <i>B. pumilus</i> , no
363	antimicrobial activity was observed for <i>B. cereus</i> and <i>B. megaterium. B.</i>
364	subtilis, B. pumilus, and B. licheniformis are phylogenetically classified into
365	the <i>B. subtilis</i> group (Bhandari et al., 2013; Turenne et al., 2015); <i>B. cereus</i>
366	and <i>B. megaterium</i> are phylogenetically distant from the <i>B. subtilis</i> group.
367	The results indicated that the antimicrobial activity of the Natto peptide was
368	specific for <i>S. pneumoniae</i> and the <i>B. subtilis</i> group of the genus <i>Bacillus</i> .
369	The specific antimicrobial action point(s) of the Natto peptide is very

370	interesting, i.e., the early growth phase after the addition of the peptide.
371	Comparable <i>S. pneumoniae</i> cell growth was observed at early time points,
372	regardless of whether the peptide was added. The <i>S. pneumoniae</i> cells
373	formed long chains in the presence of the Natto peptide, although S .
374	<i>pneumoniae</i> is naturally diplococcus as seen in the absence of the peptide
375	(Fig. 3). The results suggested that the Natto peptide caused a failure of cell
376	separation after cell division. At late growth phases, viable cell numbers
377	rapidly decreased in the presence of the peptide (Fig. 1). We proposed that
378	the cells were dead by autolysis. The rapid and pronounced cell death was
379	attributable to LytA, which is a major autolysin specific for <i>S. pneumoniae</i>
380	(Maestro and Sanz, 2016); however, LytA was not a direct target of the anti- S .
381	pneumoniae bactericidal activity of the Natto peptide. Similar long chain
382	morphology of S . pneumoniae is found in cells treated with choline (Maestro
383	et al., 2007). Choline interacts with several pneumococcal proteins and
384	affects autolysis and cell division/separation (Maestro and Sanz, 2016).
385	Chain morphology is also observed in a defective mutant of LytB, a
386	peptidoglycan hydrolase contributing to cell separation (De Las Rivas et al.,
387	2002; Bai et al., 2014). However, choline did not affect the antimicrobial

388 activity of the Natto peptide (data not shown).

389	The current results suggest that the Natto peptide might be a		
390	fragment of subtilisin family protein, namely Nattokinase. It might be		
391	generated by a proteolytic cleavage; however, the responsible protease was		
392	not identified. The bactericidal activity against <i>B. subtilis</i> was immediately		
393	apparent following the addition of the Natto peptide, and the cells died		
394	because of a direct membrane injury (Fig. 4). This means that the production		
395	of the Natto peptide constitutes a suicide mechanism of <i>B. subtilis</i> group		
396	bacteria. Its mode of action has not been characterized and should be the		
397	focus of future research.		
398	Hemolysate or hemin was required for the antimicrobial activity of		
399	the Natto peptide against both S. pneumoniae and B. subtilis group strains		
400	(Table 4). Heme/hemin could alter the secondary structure of the peptide;		
401	however, further examination is necessary to verify this hypothesis.		
402	In conclusion, we identified a unique antimicrobial peptide with a		
403	narrow spectrum of activity in Natto extract. S. pneumoniae has great		
404	impact in the clinic. It causes acute otitis media and sinusitis mainly in		
405	children, community-acquired pneumonia mainly in elders, and meningitis		

406	as an invasive infection (Hamborsky et al., 2015). Vaccines against S .
407	pneumoniae are used for the prevention of invasive infection in children and
408	community-acquired pneumonia in elders. Furtermore, antimicrobial
409	resistant <i>S. pneumoniae</i> , such as PRSP, are increasing, and their treatment
410	is now problematic. S. pneumoniae-specific antimicrobials would be
411	promising therapeutic agents, as such agents would not disturb the normal
412	flora; however, peptides are usually difficult to employ as therapeutic agents
413	because of their potentially low stability and bioavailability. Thus the
414	molecular mechanisms of the anti-pneumococcal activity of the Natto peptide
415	should be evaluated for application in the rapeutic agents for S . pneumoniae
416	infection.
417	
418	
419	Acknowledgements
420	This study was supported, in part, by a Grant-in-Aid for Scientific Research
421	(15K08103) from the Japan Society for the Promotion of Science.
422	

423 Competing Interests

424 The authors declare no competing interests.

120 10101010000	426	References
-----------------	-----	------------

- 427 Bai, X.H., Chen, H.J., Jiang, Y.L., Wen, Z., Huang, Y., Cheng, W., Li, Q., Qi,
- 428 L., Zhang, J.R., Chen, Y., Zhou, C.Z., 2014. Structure of pneumococcal
- 429 peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall
- 430 remodeling and pathogenesis. J Biol Chem 289, 23403-23416.
- 431

```
432 Bhandari, V., Ahmod, N.Z., Shah, H.N., Gupta, R.S., 2013. Molecular
```

433 signatures for *Bacillus* species: demarcation of the *Bacillus subtilis* and

434 Bacillus cereus clades in molecular terms and proposal to limit the

- 435 placement of new species into the genus *Bacillus*. Int J Syst Evol Microbiol
- 436 63, 2712-2726.

437

438	Clinical	and La	boratory	Standards	Institute,	2015.	M100-S25.	Performance
-----	----------	--------	----------	-----------	------------	-------	-----------	-------------

439 standards for antimicrobial susceptibility testing; 25th informational

440 supplement. Clinical and Laboratory Standards Institute, Wayne, PA.

441

442	Dabbagh, F.	., Negahdaripou	r, M., Berenjian,	, A., Behfar, A.,	Mohammadi, F.,
-----	-------------	-----------------	-------------------	-------------------	----------------

443 Zamani, M., Irajie, C., Ghasemi, Y., 2014. Nattokinase: production and

- 444 application. Appl Microbiol Biotechnol 98, 9199-9206.
- 445
- 446 De Las Rivas, B., Garcia, J.L., Lopez, R., Garcia, P., 2002. Purification and
- 447 polar localization of pneumococcal LytB, a putative
- 448 endo-β-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J
- 449 Bacteriol 184, 4988-5000.
- 450
- 451 Hamborsky, J., Kroger, A., Wolfe, S., 2015. Pneumococcal disease, in:
- 452 Hamborsky, J., Kroger, A., Wolfe, S. (Eds.), Centers for Disease Control and
- 453 Prevention. Epidemiology and prevention of vaccine-preventable diseases.
- 13th ed. Public Health Foundation, Washington D.C., pp. 279-295.
- 455
- 456 Hatakeyama, S., Kafuku, M., Okamoto, T., Kakizaki, A., Shimasaki, N., N.,
- 457 F., Takahashi, S., Nakayama, M., Tagawa, H., Komatsuda, A., Grave, E.,
- 458 Wakui, H., Itoh, H., 2016. Studies on the anticancer mechanisms of the Natto
- 459 extract. J Soc Mater Eng Resour Jpn 27, 15-19 (in Japanese).
- 460
- 461 Maestro, B., Gonzalez, A., Garcia, P., Sanz, J.M., 2007. Inhibition of

- 462 pneumococcal choline-binding proteins and cell growth by esters of bicyclic
 463 amines. FEBS J 274, 364-376.
- 464
- 465 Maestro, B., Sanz, J.M., 2016. Choline binding proteins from *Streptococcus*

466 *pneumoniae*: A dual role as enzybiotics and targets for the design of new

- 467 antimicrobials. Antibiotics 5, 21.
- 468

469 Mattar, E.H., Almehdar, H.A., Yacoub, H.A., Uversky, V.N., Redwan, E.M.,

470 2016. Antimicrobial potentials and structural disorder of human and animal

471 defensins. Cytokine Growth Factor Rev 28, 95-111.

472

- 474 bactericidal and bacteriolytic activity of ceragenin CSA-13 against
- 475 planktonic cultures and biofilms of *Streptococcus pneumoniae* and other
- 476 pathogenic streptococci. PLoS One 9, e101037.

- 478 Murrel, W.G., Warth, A.D., 1965. Composition and heat resistance of
- 479 bacterial spores, in: Campbell, L.L., Halvorson, H.O. (Eds.), Spores III.

⁴⁷³ Moscoso, M., Esteban-Torres, M., Menendez, M., Garcia, E., 2014. In vitro

- 480 American Society for Microbiology, Washington, D.C., pp. 1-24.
- 481

482	Nicolosi, R.J.,	Wilson, T.A	A., Lawton,	C., Hand	lelman,	G.J., 2001.	Dietary
-----	-----------------	-------------	-------------	----------	---------	-------------	---------

- 483 effects on cardiovascular disease risk factors: beyond saturated fatty acids
 484 and cholesterol. J Am Coll Nutr 20, 421S-427S.
- 485

```
486 O'Connell Motherway, M., Zomer, A., Leahy, S.C., Reunanen, J., Bottacini, F.,
```

- 487 Claesson, M.J., O'Brien, F., Flynn, K., Casey, P.G., Munoz, J.A., Kearney, B.,
- 488 Houston, A.M., O'Mahony, C., Higgins, D.G., Shanahan, F., Palva, A., de Vos,
- 489 W.M., Fitzgerald, G.F., Ventura, M., O'Toole, P.W., van Sinderen, D., 2011.
- 490 Functional genome analysis of *Bifidobacterium breve* UCC2003 reveals type
- 491 IVb tight adherence (Tad) pili as an essential and conserved
- 492 host-colonization factor. Proc Natl Acad Sci USA 108, 11217-11222.
- 493
- 494 Sakano, T., Notsumoto, S., Nagaoka, T., Morimoto, A., Fujimoto, K., Masuda,
- 495 S., Suzuki, Y., Hirauchi, K., 1988. Measurement of K vitamins in food by
- 496 high-performance liquid chromatography with fluorometric detection.
- 497 Vitamins (Tokyo) 62, 393-398 (in Japanese).

499	Sang, Y., Blecha, F., 2008. Antimicrobial peptides and bacteriocins:
500	alternatives to traditional antibiotics. Anim Health Res Rev 9, 227-235.

501

502	Schagger,	Н., ч	von Jagow,	G.,	1987.	Tricine	sodium	dodecy	ſ
-----	-----------	-------	------------	-----	-------	---------	--------	--------	---

- 503 sulfate-polyacrylamide gel electrophoresis for the separation of proteins in
- the range from 1 to 100 kDa. Anal Biochem 166, 368-379.

505

506 Suarez-Carmona, M., Hubert, P., Delvenne, P., Herfs, M., 2015. Defensins:

507 "Simple" antimicrobial peptides or broad-spectrum molecules? Cytokine

508	Growth Fact	or Rev 26,	361-370.
-----	-------------	------------	----------

509

510	Sumi, H.,	, Hamada,	Η.,	Nakanishi,	Κ.,	Hiratani,	Н.,	1990.	Enhancement	of
-----	-----------	-----------	-----	------------	-----	-----------	-----	-------	-------------	----

511 the fibrinolytic activity in plasma by oral administration of nattokinase. Acta

```
512 Haematol 84, 139-143.
```

513

514	Sumi, H.,	Ohsugi, T.,	1999. Anti-	bacterial	$\operatorname{component}$	dipicolic	acid	measured
-----	-----------	-------------	-------------	-----------	----------------------------	-----------	------	----------

in natto and natto bacilli. Nippon Nogeikagaku Kaishi 73, 1289-1291 (in

516	Japanese)	•
010	oupuiloso,	٠

518 Turenne, C.T., Snyder, J.W., Alexander, D.C., 2015. Bacilla	us and c	other
---	----------	-------

- aerobic endspore-forming bacteria, in: Carroll, K.C., Funke, G., Landry, M.L.,
- 520 Richter, S.S., Warnock, D.W. (Eds.), Manual of Clinical Microbiology, 11th
- 521 edition. ASM Press, Washington, DC.
- 522
- 523 Wang, G., Mishra, B., Epand, R.F., Epand, R.M., 2014. High-quality 3D
- 524 structures shine light on antibacterial, anti-biofilm and antiviral activities of
- 525 human cathelicidin LL-37 and its fragments. Biochim Biophys Acta 1838,
- 526 2160-2172.

527

528 White, D.C., Granick, S., 1963. Hemin biosynthesis in *Haemophilus*. J

529 Bacteriol 85, 842-850.

- 530
- 531 Xhindoli, D., Pacor, S., Benincasa, M., Scocchi, M., Gennaro, R., Tossi, A.,
- 532 2016. The human cathelicidin LL-37-A pore-forming antibacterial peptide
- and host-cell modulator. Biochim Biophys Acta 1858, 546-566.

535	Yount, N.Y.,	Bayer, A.S.	, Xiong,	Y.Q.,	Yeaman,	M.R.,	2006.	Advances	in
000		,,,,	,,	-· · · · · · · · · · · · · · · · · · ·				1101/011000	

antimicrobial peptide immunobiology. Biopolymers 84, 435-458.

537

- 538 Zaheer, K., Akhtar, M.H., 2015. An updated review of dietary isoflavones:
- 539 Nutrition, processing, bioavailability and impacts on human health. Crit Rev
- 540 Food Sci Nutr, doi: 10.1080/10408398.2014.989958.
- 541
- 542 Zanetti, M., Gennaro, R., Skerlavaj, B., Tomasinsig, L., Circo, R., 2002.
- 543 Cathelicidin peptides as candidates for a novel class of antimicrobials. Curr
- 544 Pharm Des 8, 779-793.

545

547 Table 1. MICs of the Natto-peptide tested against various Gram-positive

548 bacteria, Gram-negative bacteria, and fungi

Strain	MIC (µg/mL)
Gram-positive bacteria	
B. cereus JCM 2152^{T}	>1,280
<i>B. cereus</i> AHU 1358	>1,280
B. licheniformis AHU 1371	80
<i>B. megaterium</i> AHU 1373	>1,280
<i>B. pumilus</i> AHU 1386	80
<i>B. subtilis</i> AHU 1708^{T}	80
<i>B. subtilis</i> AHU 1035	160
<i>B. subtilis</i> AHU 1037	80
<i>B. subtilis</i> AHU 1604	80
<i>B. subtilis</i> AHU 1615	160
<i>B. subtilis</i> AHU 1722	160
<i>E. faecalis</i> HU1 (VRE)	>1,280
<i>E. faecalis</i> M2486	>1,280
<i>E. faecium</i> M2483	>1,280
L. fermentum ATCC 9338 ^T	640
$L. plantarum NRIC 1067^{T}$	>1,280
L. rhamnosus ATCC 7469^{T}	>1,280
S. aureus ATCC 25923	>1,280
S. aureus SUNA1 (HA-MRSA)	>1,280
S. aureus SR-581(CA-MRSA)	>1,280

S. agalactiae $JCM 5671^{T}$	640
S. mitis JCM 12971^{T}	640
$S. mutans { m JCM} 5705^{ m T}$	640
S. pneumoniae ATCC 49619	80
<i>S. pneumoniae</i> R6	80
S. pneumoniae P103 (Δ lytA)	80
S. pneumoniae SR11	160
<i>S. pneumoniae</i> MH101 (PRSP)	160
<i>S. pneumoniae</i> 237 (PRSP)	80
<i>S. pneumoniae</i> 442 (mucoid)	80
S. pyogenes $\rm JCM~5674^T$	1,280
S. salivarius JCM 5707^{T}	1,280
S. sanguinis JCM 5708^{T}	640
Gram-negative bacteria	
A. baumanni ATCC 19606	>1,280
A. baumanni SRLAC2	>1,280
<i>E. coli</i> ATCC 25922	>1,280
<i>E. coli</i> ATCC 35218	>1,280
<i>E. coli</i> 7249 ST131	>1,280
H. influenza ATCC 51907	>1,280
P. aeruginosa ATCC 27853	>1,280
<i>P. aeruginosa</i> PA103	
1. aði aginðba 111100	>1,280
<i>P. aeruginosa</i> 9728 (mucoid)	>1,280 >1,280
P. aeruginosa 9728 (mucoid)	>1,280

>1,280

551 Table 2. Antimicrobial activity of the Natto peptide from various Natto

552	preparations obtained	using different	soybeans and <i>B</i> .	<i>subtilis</i> strains
-----	-----------------------	-----------------	-------------------------	-------------------------

	MIC(µg/mL)							
Natto	S. pneumoniae	B. subtilis						
preparation	R6	AHU 1708 ^T						
160	640	1,280						
170	80	160						
180	80	160						
200	80	80						
300	320	320						

556 Table 3. Synergistic antimicrobial effect (FIC index) of the Natto peptide and

557	other	antimicro	bial agents
-----	-------	-----------	-------------

Antibiotic	FIC index
Amoxicillin	2
Cefditoren	2
Tebipenem	2
Levofloxacin	2
Clarithromycin	1.38
Amikacin	1.09
Tobramycin	2
Gentamicin	2

561 Table 4. The effect of medium supplemented with horse hemolysate on the.

562 MIC of the Natto peptide with *S. pneumoniae* R6 strain

563

Supplement	Concentration	MIC (µg/mL)
None	-	>1,280
Horse hemolysate	5%*	80
	1%	40
	0.32%	40
	0.10%	80
	0.032%	320
	0.010%	640
	0.0032%	1,280
	0.0010%	>1,280
Supernatant of heat-treated horse hemolysate	20%	40
	5%	320
Horse serum	5%	>1,280
Hemin	6.9 µg/mL	80
	3.4 μg/mL	320
	1.7 µg/mL	640
	0.86 µg/mL	1,280
	0.43 μg/mL	>1,280

564

565 *The concentrations are (v/v).

567 Figure Legends;

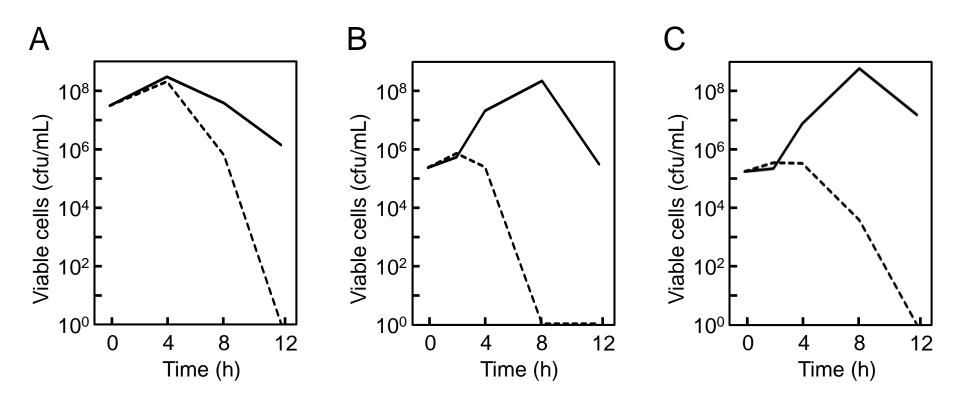
568

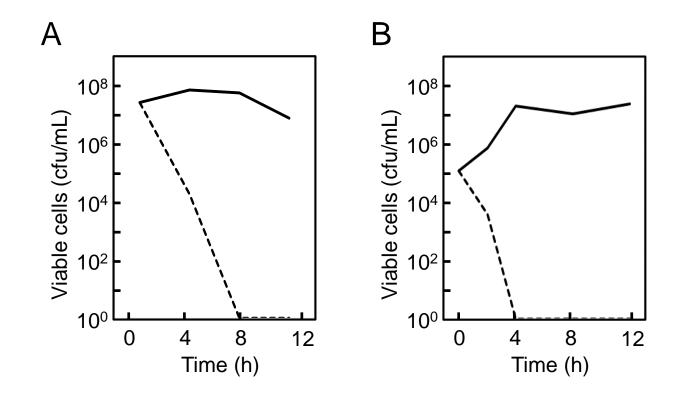
569	Fig.	1.S	urviva	al	curves of S.	pneumon	<i>iae</i> stra	ains	in	the	presence	and	ab	sence
000	5 •	- · ~		~ -		piicennoin		ATTE		ULLU	procence	and	an	001100

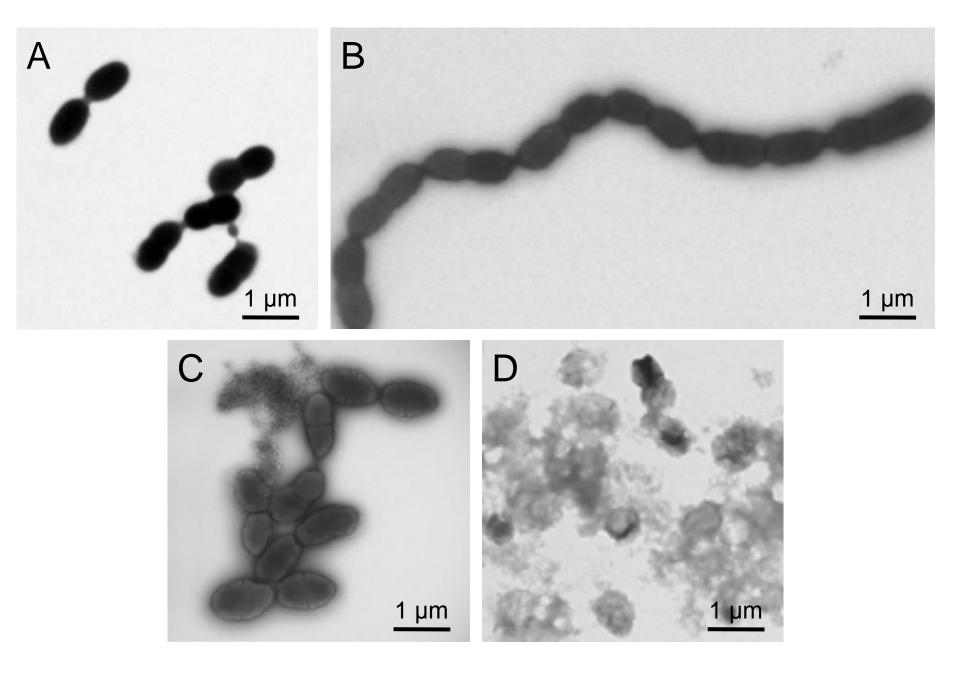
- 570 of the Natto peptide.
- 571 A: *S. pneumoniae* R6 cells were pre-cultured to a cell density of
- approximately 10⁷ cells/mL in TH broth containing 5% (v/v) horse
- 573 hemolysate. The Natto peptide was then added at a concentration of 640
- 574 μg/mL.
- 575 B and C: S. pneumoniae R6 (B) and P103 (lytA-deficient mutant derived
- 576 from R6) (C) cells were suspended at a density of approximately 10⁵ cells/mL
- 577 in TH broth containing 5% (v/v) horse hemolysate. The Natto peptide was
- 578 then added at a concentration of 640 µg/mL.
- 579 Throughout the cultivation, the cultures were sampled, and culture aliquots
- 580 were spread on a TH agar supplemented with 5% (v/v) horse hemolysate, and
- 581 cultured for 24 h. Grown colonies were then counted. Dashed lines indicate
- 582 cell numbers in the presence of the Natto peptide. Solid lines indicate cell
- numbers in the absence of the Natto peptide.
- 584

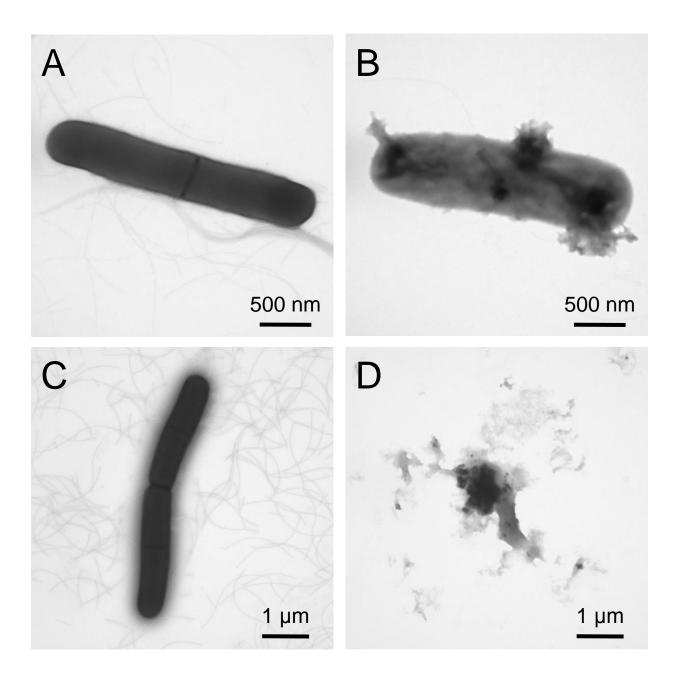
586	Fig. 2. Survival curves of <i>B. subtilis</i> strain in the presence and absence of the
587	Natto peptide.

- 588 A: *B. subtilis* AHU 1708^T cells were pre-cultured to a cell density of
- approximately 10⁷ cells/mL in TH broth containing 5% (v/v) horse
- 590 hemolysate. The Natto peptide was then added at a concentration of 640
- 591 μg/mL.
- 592 B: *B. subtilis* AHU 1708^T cells were suspended at a cell density of
- ⁵⁹³ approximately 10⁵ cells/mL in TH broth containing 5% (v/v) horse
- hemolysate. The Natto peptide was then added at a concentration of 640
- $\mu g/mL$, and the cells were cultured.
- 596 Throughout the cultivation, the cultures were sampled, and culture aliquots
- 597 were spread on TH agar supplemented with 5% (v/v) horse hemolysate, and
- 598 cultured for 24 h. Grown colonies were then counted. Dashed lines indicate
- 599 cell numbers in the presence of the Natto peptide. Solid lines indicate cell
- 600 numbers in the absence of the Natto peptide.


603	Fig. 3.	TEM	analysis	with	negative	staining	of <i>S</i> .	pneumonia	<i>e</i> R6	cell	\mathbf{s}
-----	---------	-----	----------	------	----------	----------	---------------	-----------	-------------	------	--------------


- 604 cultured in the presence or absence of the Natto peptide.
- 605 The cells were cultured in TH broth containing 5% (v/v) horse hemolysate in
- the absence (A and C) or presence (B and D) of the Natto peptide (640 µg/mL).
- After 4 h (A and B) or 8 h (C and D) of incubation, the cells were harvested
- and observed TEM after negative staining.
- 609


Fig. 4. TEM analysis with negative staining of *B. subtilis* AHU 1708^T cells


612 cultured in the presence or absence of the Natto peptide.

- 613 The cells were cultured in TH broth containing 5% (v/v) hemolysate in the
- absence (A and C) or presence (B and D) of the Natto peptide (640 µg/mL).
- After 4 h (A and B) or 8 h (B and D) of incubation, the cells were harvested
- 616 and observed using TEM after negative staining.

NK	1(MAFSNMSAQA			0 40 MSSAKKKDVI	50 SEKGGKVQKQ
NP	6(100
NK NP		LDEKAVKELK		DHIAHEYAQS	
NK NP		SNVKVAVIDS		0 14 VRGGASFVPS	
NK NP				0 19 KVLDSTGSGQ	
NK NP) 24 SSGIVVAAAA) 250 GNEGSSGSTS
NK NP	TVGYPAKYPS	TIAVGAVNSS	NQRASFSSAG) 290 SELDVMAPGV	
NK NP		TPHVAGAAAL	ILSKHPTWTN	30 34 AQVRDRLEST AQVRDRLEST	ATYLGSSFYY
NK NP	36 GKGLINVQAA GK				

Supplement Figure. Comparison of amino acid sequence of nattokinase (NK) and Natto peptide (NP).

The amino acid sequence of NK is cited from ACJ48969.1.