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Objective: Coxsackievirus B (CVB) is associated with the development of human diseases including type 1 diabetes. 
Previous studies identified cyclical variations in type 1 diabetes incidence—peak incidences occurring in 4- to 6-year 
periods in two regions in England, a 5-year period in Western Australia, and 5.33-year period in Poland. However, it is 
not clear whether CVB infection rates demonstrate similar cyclical variation characteristics. The purpose of this study 
was to characterize the periodicity in CVB surveillance data.
Results: Maximum entropy spectral analysis was performed on monthly CVB surveillance data in Japan. In addition to 
demonstrate a 1-year cycle for all the serotypes, spectral peaks were demonstrated for dominant cycles—6.9-, 3.8-, 4.3-, 9.5-, 
and 7.8- year periods for CVB1, CVB2, CVB3, CVB4, and CVB5, respectively. Pearson correlation was used to compare 
the least-squares fit curves based on periods estimated from the analysis with the original data. The results for all five 
serotypes—CVB1, CVB2, CVB3, CVB4, and CVB5—demonstrated good correlation— ρ = 0.96, ρ = 0.60, ρ = 0.90, 
ρ = 0.88, and ρ = 0.67, respectively. This method could be a useful tool for the efficient investigation of CVB as a 
pathogen of type 1 diabetes.
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INTRODUCTION

Coxsackievirus B (CVB) have recently attracted 
attention as a cause of type 1 diabetes, which has a high 
incidence among children in European countries 1,2). The 
estimated increase in annual incidence of type 1 diabetes 
in Europe was 3.9% (95% CI 3.6%, 4.2%) from 1989 to 
2003; worldwide, the estimated annual increase was 2.8% 
(95% CI 2.4%, 3.2%) from 1990 to 1999 3).

Examining the periodic structure of CVB serotype 
surveillance data is essential for predicting the epidemic 
of type 1 diabetes. Some researchers have reported 
cyclical variations in yearly incidence rates of type 1 
diabetes—4-year intervals in the Yorkshire region in 
England from 1978 to 1990 4), a 6-year cyclical pattern 
in a neighboring area of northeast England from 1990 to 2007 
5), a sinusoidal cycle with peaks every 5 years in Western 
Australia from 1985 to 2010 6), and a 5.33-year periodicity 

in Poland during the period 1989-2012 7). More recently, 
to help clarify recent trends in European incidence rates, 
European Diabetes registry data were analyzed from over 
84,000 children in 26 European centers representing 22 
countries from 1989 to 2013, with separate estimates of 
incidence rate increases derived in five subperiods 3). 

To date, no studies have clarified whether surveillance 
data for CVB serotypes show similar cycles as those in 
type 1 diabetes incidence data, likely because studies 
investigating publicly available CVB serotype surveil-
lance data for Europe are lacking. On the other hand, 
in Japan, CVB serotype surveillance data have been 
collected for 20 years 8). The purpose of this study was 
to investigate the periodic structure of Japanese CVB 
serotype surveillance data by using time-series analysis 
based on the maximum entropy method (MEM) in the 
frequency domain and the least squares method (LSM) in 
the time domain 9, 10).
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Material and Method 
CVB Serotype Surveillance

Monthly surveillance data of CVB serotypes (CVB1, 
CVB2, CVB3, CVB4, and CVB5) from January 2000 
to December 2018 (228 data points) were analyzed. 
The number of specimens that were tested positive for 
pathogens and viruses, including CVB serotypes, are 
regularly reported to the National Institute of Infectious 
Disease Surveillance Center (Tokyo, Japan). These data 
are published in the monthly periodical Infectious Agents 
Surveillance Report 11). 

MEM spectral analysis

Power spectral density (PSD) based on maximum 
entropy method (MEM), P(  f  ) (where f represents 
frequency), for the time series with equal sampling 
interval ∆t, can be expressed by 

where the value of Pm is the output power of a predic-
tion-error filter of order m and γm,k is the corresponding 
filter order. The value of the MEM-estimated period of the 
n-th peak component Tn (=1/fn; where fn is the frequency of 
the n-th peak component) can be determined by the posi-
tions of the peaks in the MEM-PSD.

Least squares method (LSM)

The validity of the MEM spectral analysis results 
was confirmed by calculation of the least squares fitting 
(LSF) curve to the original time series with MEM esti-
mated periods. The formulation of the LSF curve in X(t) is 
described as follows:

which is calculated using the LSM for x(t) with unknown 
parameters fn, A0 and An (n = 1, 2, 3,…, N), where fn 
(=1/Tn; Tn is the period) is the frequency of the n-th 
component, A0 is a constant that indicates the average 
value of the time series data, An and θn are the amplitude 
and the phase of the n-th component, respectively, and N 
is the total number of components. 

Results 
MEM Spectral Analysis of the Surveillance Data

Monthly surveillance data of CVB serotype from January 
2000 to December 2018 are shown in Figure 1. Therein, all 
incidence data show a yearly cycle with large epidemics every 
few years, for example, CVB1 (Figure 1a) in 2004 and 2011, 
and CVB2 (Figure 1c) in 2005 and 2009. 

Periodicity of the Surveillance Data 

Figure 2 shows power spectral densities (PSDs) 
obtained with the MEM spectral analysis (Equation [1]) 
for the data in Figure 1. In each plot— CVB1 (Figure 
2a), CVB2 (Figure 2b), CVB3 (Figure 2c), CVB4 (Figure 
2d), and CVB5 (Figure 2e)—prominent spectral peaks 
were observed at f = 1.0 [units (1/year)], corresponding 
to the 1-year cycle, that is, the seasonal cycle. In the low-
frequency range, f < 1.0, reflecting oscillations longer than 
the 1-year cycle, several prominent spectral peaks were 
observed. In each power spectral density plot, the domi-
nant spectral peak was observed during an approximately 
3- to 5-year period. For each serotype, five dominant 
spectral frequency mode peaks with corresponding 
periods and powers were identified, and listed in Table 1. 

With the five periodic modes that were clearly observed 
in each PSD (Table 1), the least squares fitting (LSF) curve 
(Equation [2]) for each serotype was calculated.  Each 
LSF curve thus obtained is presented in Figure 1.

Each LSF curve reproduced the original data well 
(Figure 1), which confirmed that the periods from MEM 
spectral analysis (Figure 2, Table 1) were accurate. 
Pearson correlations between the original data and the 
LSF curves—ρ = 0.96, ρ = 0.60, ρ = 0.90, ρ = 0.88, 
and ρ = 0.67 for CVB1, CVB2, CVB3, CVB4 and CVB5, 
respectively—further demonstrated a good fit.

Discussion and Conclusions

An important finding of this study was the identifica-
tion of 3- to 5-year period for the epidemic of enterovirus 
in the surveillance data in Japan (Figure 2 and Table 1). 
This period is similar to that observed in time-series data 
on the number of patients with type 1 diabetes in Europe 2). 
Therefore, if periodicities in CVB infection rates similar 
to those identified in these surveillance data in Japan is 
found in also European data, the association between CVB 
serotypes and type 1 diabetes would be supported. Coun-
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Fig 1　 Comparison of the least-squares fitting curves 
calculated for long-term trends (solid line) with 
original data (dotted line) for (a) CVB1, (b) 
CVB2, (c) CVB3, (d) CVB4, and (e) CVB5.

Fig 2　 Power spectral density plots of the original data 
for (a) CVB1, (b) CVB2, (c) CVB3, (d) CVB4, 
and (e) CVB5.
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tries with large numbers of patients with type 1 diabetes, 
such as Finland, have published surveillance data for 
enteroviruses but not for serotype-specific enterovirus. To 
resolve the high incidence of type 1 diabetes in Europe, 
access to serotype-specific enterovirus surveillance data 
is essential. We anticipate that this method of time-series 
analysis will be a useful tool for elucidating periodicity in 
serotype-specific enterovirus surveillance data. 

Limitation

A limitation of this study was that a direct comparison 
between CVB infection rate and type 1 diabetes periodici-
ties could not be performed since we did not have access 
to CVB epidemiological time-series data for European 
countries. Investigating the correlation of CVB infection 
rates with type 1 diabetes, for example in countries such 

as Finland, would allow efficient estimation of CVB as 
pathogen of type 1 diabetes, to contribute to reducing the 
incidence of type 1 diabetes.

List of abbreviations

LSF, least squares fitting; MEM, maximum entropy 
method; PSD, power spectral density.
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Table 1. Characteristics of the five dominant spectral peaks shown in Figure 2. 

 
Frequency 

(1/year) 
Period (year) Power 

CVB1

0.15 6.88 18.52 
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CVB5
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Table 1.　 Characteristics of the five dominant spectral 
peaks shown in Figure 2.
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