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1 Introduction

 Recent spinal cord injury (SCI) studies have 
shown that the brain undergoes regenerative 
reactions following SCI 1-3）, in addition to the local 
regenerative responses that occur within the 
injured spinal cord 4, 5）. Non anatomical studies such 
as metabolic or neural activities in the brain after 
SCI have reported that dynamic compensation 
occurs in the brain that suggests network 
reorganization; these compensatory mechanisms 
could contribute to functional improvement after 

SCI 6-8）. In the brain imaging study using positron 
emission tomography, increased activation of 
bilateral cortex and contralateral ventral striatum 
were observed during recovery from cervical SCI 
lesion in the nonhuman primate 9）. Additionally, a 
resting-state functional Magnetic Resonance 
Imaging (MRI)  study of  SCI patients  also 
demonstrated functional network plasticity in the 
brain as a result of injury to the spinal cord 8）; 
however, to date, precise, high quality anatomical 
studies have not been  performed. Thus, visualizing 
the structural reorganization of neural pathways in 
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ABSTRACT
	 Background: 
	 Spinal cord injury (SCI) induces distal effects on neural activity in the brain. To date, precise, high quality 
anatomical studies have not been performed. The goal of this study was to delineate neuroanatomical enhancement 
of dormant pathways in the brain following SCI using an appropriate serotype of an adeno-associated-virus (AAV) 
with a CAG promotor.

	 Methods:
	 We injected three serotypes of an AAV viral vector with a CAG promoter and a green fluorescent protein (GFP) 
tag, AAV-2, -5, and -8-CAG-GFP, unilaterally, into one hemisphere of the rat brain to compare the utility of the three 
serotypes as neural tracers. Then, fluorescent labeling and confocal microscopy were used to assess changes in 
neural pathways for an optimal serotype in intact and SCI rats.

	 Results:
	 The AAV-8 serotype provided the optimal tracing of neural pathways in the brain in terms of transduction 
properties, migratory capabilities and cell labeling specificity. Enhanced both interhemispheric and inter-nucleus 
connections were observed six weeks after SCI induction using the AAV-8-CAG-GFP viral tracer.

	 Conclusions:
	 AAV serotype 8 with a CAG promotor was the most useful neural AAV tracer for elucidating changes in neural 
pathways in the brain. SCI-induced enhancement of brain network was detectable with the AAV-8-CAG-GFP viral 
tracer in our model system.
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the brain following SCI using neuroanatomical 
techniques may be crucial for providing mechanistic 
insights at a cellular level.
 To delineate neural pathways in the central 
nervous system, neural tracers are widely used. As 
a result of recent advances in viral tracing 
technology, numerous viral tracers have been 
tested; of them, the adeno-associated virus (AAV) 
has distinct properties that allow it to transduce 
target neurons with gene sequences coding for 
f luorescent marker proteins such as green 
fluorescent protein (GFP) or tdTomato, with no 
apparent cytotoxicity 10）. In AAVs infected neurons, 
these fluorescent proteins accumulate throughout 
the cytoplasm of the cell, including the cell body, 
dendrites, axon, and axon terminals, providing 
precise fluorescent labeling of neural pathways 11）. 
Because AAVs vectors produce robust florescent 
signal following infection, therefore, conventional 
confocal microscopy or light-sheet microscopy can 
detect these signals directly without multiple 
histological staining steps 12）.  AAVs provide 
advantages that increase overall methodological 
flexibility in addition to their sensitivity, specificity, 
and reliability as anterograde tracers to delineate 
neural connections compared to conventional 
tracers such as horseradish peroxidase (HRP), 
Phaseolus vulgaris leucoagglutinin (PHA-L), and 
biotinylated dextran amine (BDA) in rodent 
brain 12）. Thus, AAVs could be a powerful tool to 
t r a c e  n e u r a l  p a t h w a y s  t o  i m p r o v e  o u r 
understanding of the reorganization that occurs in 
the brain following SCI.
 In the current study, we compared fluorescent 
intensities following transduction with three 
serotypes, AAV-2 11, 13）, AAV-5 13, 14） and AAV-8 15）, to 
evaluate the ability to provide optimal neural 
tracing in intact brains. Because several serotypes 
have been reported that each has own properties in 
terms of cell type selectivity (AAV tropism) 10, 16）, it 
was important to select an appropriate serotype to 
study neural pathways in our model system. The 
AAV-2, -5 and -8-CAG-GFP viral tracers were 
injected into the brain; among these serotypes, 
AAV-8 provided the optimal ability to trace neural 
pathways in brain in our study. Then, we tested the 
hypothesis that the enhancement of dormant 
pathways induced by SCI could be detected with 
our AAV-8-CAG-GFP viral tracer.

2 Materials and Methods

Animals
 All experiments were conducted in accordance 
with the institutional guidelines of Sapporo Medical 
University. The use of animals in this study was 
approved by the Animal Care and Use Committee 
and the Committee for Security of Recombinant 
DNA Experiments of Sapporo Medical University.

Viral tracer injections
 GFP-encoding AAVs with a CAG promoter and 
tdTomato-encoding AAVs with a CAG promoter 
(AAV-2, -5 and -8-CAG-GFP/tdTomato) were 
purchased from Vector Biolabs (Philadelphia, PA, 
USA). Adult (7-week old) male Sprague-Dawley 
(SD) rats (250-300g) were placed on a stereotaxic 
frame under ketamine (75 mg/kg, intraperitoneal) 
and xylazine (10 mg/kg, intraperitoneal) anesthesia. 
A craniotomy was performed to expose the 
sensorimotor cortex. GFP-encoding AAVs were 
injected into the right hemisphere. Six injections 
for cortex (AAVs; 4.0 ×1010 genome copy/μl, 0.5 μl 
per  s i te )  were  performed at  the fo l lowing 
coordinates: 1.0 mm lateral; 1.5 mm, 1.0 mm depth, 
and -1.0 mm, 0 mm, 1.0 mm posterior to bregma 
using a nanoliter-injector (World Precision 
Instrument Inc., Sarasota, FL, USA) attached to a 
pulled glass pipette 17）. The method used in this 
study allows us to perform precise micro-delivery of 
viral vectors to the localized region in the brain. 
The needle was left in place for 3 min before moving 
to the next site. tdTomato-encoding AAVs were also 
injected into the left hemisphere. One point 
injection for brain stem (AAVs; 4.0×1010 genome 
copy/μl, 0.21 μl) was performed at the following 
coordinates: 1.0 mm lateral; 8.0 mm depth, and 6.0 
mm, posterior to bregma.

Histological analysis
 Six weeks after tracer injections 18）, rats were 
perfused transcardially with cold phosphate-
b u f f e r e d  s a l i n e  ( P B S )  f o l l o w e d  b y  4 % 
paraformaldehyde under deep anesthesia with an 
intraperitoneal injection of ketamine (75 mg/kg) 
and xylazine (10 mg/kg). Whole brains were 
dissected out and were stored at - 80 °C until use. 
Coronal sections were cut to 50 μm thickness using 
a cryostat (Sakura Seiki Co, Tokyo, Japan).
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 One section per animal was selected and cut 
according to the rat stereotaxic atlas 19）. We cut the 
frozen sections as follows: to compare AAVs 
transduction properties, sections were cut at 
Bregma -2 mm (Fig. 1D, 1E); to measure and 
compare anterograde migratory capability, sections 
were cut at Bregma -2 mm (Fig. 1F) and Bregma 
-8 mm (2D, 2E); to test the specificity of cell 
labeling, sections were cut at Bregma 0 mm (Fig. 3); 
to  assess  a l terat ions  in  interhemispher ic 
connectivity following SCI, sections were cut at 
Bregma 0 mm (Fig. 5); to assess alterations in 
neural connectivity within the brain stem following 
SCI, sections were cut at Bregma -6 mm (Fig6). 
Then, these sections were washed in PBS- 0.1% 
Tween 20 (PBS-T) 3 times.
 The sections were examined using a confocal 
microscopy (Zeiss LSM780 ELYRA S.1 system). 
Sections were viewed directly to assess GFP and 
tdTomato fluorescence. Intensities of GFP or 
tdTomato signals were quantified using ImageJ 
software bundled with Java 1.8.0_172 (National 
Institutes of Health, Bethesda MD, USA, http://rsv.
info.nih.gov/ij/) 11, 17, 20）.

SCI model
 Contusive SCI was performed as described 
previously 21）. Briefly, adult (7-week old) male SD 
rats (250 -300g) were anesthetized with an 
intraperitoneal injection of ketamine (90 mg/kg, 
i n t r a p e r i t o n e a l )  a n d  x y l a z i n e  ( 4  m g / k g , 
intraperitoneal). After skin incision, the T9 vertebra 
was stabilized, a laminectomy was performed at the 
T9-10 level of the spinal cord, and a 150 kdyn 
contusion was delivered to the spinal cord using an 
Infinite Horizons impactor (Precision Systems and 
Instrumentation, LLC, Lexington, KY, USA). 
Appropriate post-operative care was provided for all 
animals, including twice-daily manual bladder 
expression for up to 14 days. Rats were housed in 
an atmosphere of 50% humidity at a temperature of 
24 ± 2°C.  At day 14 after SCI induction, AAV-8-
CAG-GFP virus were injected to the both SCI 
animals and age-matched intact animals 22-27） as 
described above.

Behavioral testing
 Open field locomotor function was assessed 
using the Basso, Beattie, and Bresnahan (BBB) 

locomotor rating scale 28）. Intact and SCI rats were 
scored 2 days prior to SCI induction, and at 2 days 
intervals thereafter until sacrifice at 26 days post-
SCI induction (n = 8/Intact group, n = 8/SCI group). 

Statistics
 All statistical analyses were performed with 
Statistical Package for the Social Sciences (SPSS) 
21 for Macintosh (IBM, Inc, IL, USA). Groups were 
compared by one-way ANOVA, and the Tukey-
Kramer test was used for post-hoc comparisons. 
Comparisons between two groups were performed 
using the student t-test. Data were expressed as the 
mean ± standard error of the mean (SEM). Differences 
were considered statistically significant at p < 0.05.

3 Results

3.1 Transduction properties at the site of injection did 
not differ among the three AAV serotypes

 To compare the transduction properties of the 
AAV-2, -5 and -8 serotypes at the injection site in 
the brain, GFP-encoding AAVs with a CAG 
promoter (AAV-2, -5 and -8-CAG-GFP) were 
injected into left hemisphere. Six weeks after 
injection of the AAVs, we examined fluorescent 
intensity of these serotypes in the coronal brain 
sections (Fig.1). Intense GFP+ fluorescence was 
observed in the left hemisphere of the brain around 
the injection site under a confocal microscopy.
 Quantification of GFP fluorescent signal 
intensities across the whole section (Fig. 1D: AAV-
2: 27.0 ± 6.3, n=4; AAV-5: 36.1 ± 8.8, n=4; AAV-8: 
37.2 ± 9.0, n=4) and around the injection site (Fig. 
1A1, 1B1, 1C1) (Fig. 1E: AAV-2: 359.6 ± 70.7, n=4; 
AAV-5: 347.9 ± 68.1, n=4; AAV-8: 375.3 ± 70.4, 
n=4) revealed that there were no significant 
differences among the three AAV serotypes around 
the injection sites.

3.2 AAV Serotype 8 with a CAG promotor exhibited the 
highest anterograde migratory capability in the 
intact brain

 To measure anterograde migratory capability, 
we assessed fluorescent signal intensities of coronal 
sections from the left internal capsule (Fig. 1F: 
AAV-2: 181.9 ± 36.5, n=4; AAV-5: 176.5 ± 33.8, 
n=4; AAV-8: 185.4 ± 39.9, n=4) and the cerebral 
peduncle in the brain stem (Fig. 2). Quantifications 
of GFP fluorescent intensities revealed that the 
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signal intensity of fluorescent labeling of the GFP-
tagged AAV-8 was higher than for AAV-2 or AAV-5 
in the whole area including the cerebral peduncle 
(Fig. 2D: AAV-2: 22.5 ± 3.1, n=4; AAV-5: 21.3 ± 
3.0, n=4; AAV-8: 38.8 ± 5.3, n=4; p < 0.05) and in 
the cerebral peduncle alone (Fig. 2A1. 2B1, 2C1, 
Fig. 2E: AAV-2: 156.2 ± 30.5, n=4; AAV-5: 148.6 ± 
29.3, n=4; AAV-8: 229.3 ± 44.6, n=4; p < 0.05), though 
no statistical differences in fluorescent labeling 
were observed in the internal capsule (Fig. 1A2, 
1B2, 1C2). These results show that the anterograde 
migratory capability of serotype 8 of AAV with CAG 
promotor was the highest in this study.

3.3 AAV serotype 8 with a CAG promotor resulted in the 
highly specific cell labeling in the intact brain

 To test the specificity of cell labeling, AAV-8-
CAG-GFP virus was injected into the right cortex 

and td AAV-8-CAG-tdTomato was injected into the 
left cortex (Fig. 3A, n=4). Six weeks later, we 
examined fluorescent intensity in the coronal brain 
sections under a confocal microscope (Fig. 3B). 
GFP+ fluorescent signals (green) were observed in 
the left cortex (Fig.  3C in Fig. 3B box), throughout 
the corpus callosum, as well as in the area around 
the injection site in the right cortex. High power 
imaging revealed that numerous GFP+ neural fibers 
and cells were clearly visible in the left cortex (Fig. 
3C). Fluorescent tdTomato signals (red) were also 
observed in the left cortex where they were injected; 
high power imaging revealed tdTomato+ fibers and 
cells (Fig. 3D in Fig. 3B box). These cells were not 
co-labeled in the left cortex (Fig. 3E). Thus, the 
AAV-8 serotype with a CAG promotor used in this 
study resulted in cell-specific labeling.

Figure 1. Coronal brain sections (Bregma -2 mm) injected with (A) 
AAV-2, (B) AAV-5, (C) AAV-8-CAG-GFP viral vectors. 
The boxed area in A1, B1, C1 indicates labeling around 
the injection sites, and the boxed area in A2, B2, C2 
indicates labeling in the internal capsule for the three 
serotypes, respectively. Quantification of signal intensity 
across the whole section (D) around the injection site (E) 
and in the internal capsule (F).  Scale bar = 2 mm.

Figure 2. Coronal brain sections (Bregma -8 mm) injected with (A) 
AAV-2, (B) AAV-5, (C) AAV-8-CAG-GFP. The boxed area 
in A1, B1, C1 are regions of interest showing labeling in 
the cerebral peduncle for the three serotypes, respectively. 
Quantification of signal intensity across the whole section 
(D) and in the cerebral peduncle (E). Scale bar = 1mm. 
* p<0.05.
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3.4 Endogenous recovery of locomotor funct ion 
following SCI

 To confirm that our animal model of SCI 
showed endogenous improvement of locomotor 
function following injury, open field locomotor 
activity was assessed using the BBB scoring scale 
at two-day intervals from SCI until 26 days post-
SCI. Before SCI induction, BBB scores had a value 

of 21. SCI animals demonstrated near-complete 
hind limb paraplegia immediately after SCI, but 
exhibited a gradual improvement that plateaued 20 
days after SCI (BBB score; 8.6 ± 1.24, n=8) (Fig. 4).  
The BBB scores of intact rats (n=8) remained 21 for 
study period. This is consistent with our previous 
studies 21, 29, 30） and we used this model system in the 
current study.

Figure 3. Schematic drawing of injection sites for AAV-8-CAG-GFP and AAV-8-CAG-tdTomato (A). Low power confocal microscopic tiled 
image (B). C, D and E are region of interest identified by the boxed area in B.  Scale bars = 2 mm (B), 100 μm (C, D, E).

Figure 4. Behavioral analysis of locomotor function with BBB score.  
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3.5 SCI induced enhanced interhemispheric connectivity 
detectable with the AAV-8-CAG-GFP vector

 To detect the enhanced interhemispheric 
connections following SCI, we injected an AAV-8-
CAG-GFP vector in the left motor cortex of intact 
(Fig. 5A) and SCI (Fig. 5B) animals. The fluorescent 
intensity at the injection sites was similar in both 
intact (Fig. 5A) and SCI (Fig. 5B) animals; however, 
the intensities across whole section (Fig. 5B), in the 
contralateral cortex (Fig. 5D), and at the corpus 
callosum (Fig. 5F) in the SCI animals were greater 
than in whole section (Fig. 5A), contralateral cortex 
(Fig. 5C), and corpus callosum (Fig. 5E) of the 
intact animals.
 Quantitative analysis demonstrated that 
fluorescent signal intensities in the SCI animals 
were higher than in the intact animals in the whole 
area  (Fig. 5H: intact: 24.5 ± 4.7, n=4; SCI: 38.8 ± 
6.3, n=4; p < 0.05), the contralateral cortex  (Fig. 5I: 
intact: 31.1 ± 6.9, n=4; SCI: 93.2 ± 20.3, n=4; p < 
0.01),  and the corpus callosum (Fig. 5J: intact: 71.6 
± 15.4, n=4; SCI: 97.3 ± 18.9, n=4; p < 0.05), 
though fluorescence around the injection sites in 
the cortex did not differ (Fig. 5G: intact: 646.4 ± 
80.3, n=4; SCI: 650.5 ± 79.4, n=4). These results 
show that  the enhanced interhemispheric 
connectivity induced by SCI could be detected with 

the use of AAV-8-CAG-GFP viral tracer.

3.6 SCI induced enhanced inter -nucleus 
connections within the brain stem detected 
with AAV-8-CAG-GFP vector

 To  detec t  the  enhanced  inter -nuc leus 
connections within brain stem following SCI, we 
injected an AAV-8-CAG-GFP vector around the left 
substantial nigra (SN) in both intact and SCI 
animals (Fig. 6A). The intensity at the injection 
sites was similar in both intact (Fig. 6B) and SCI 
(Fig. 6C) animals; however, the GFP fluorescent 
intensities across whole sections (Fig. 6C), in the 
transverse fiber of the pons (Fig. 6E), and in the 
contralateral subthalamic nucleus (STN) (Fig. 6G) 
in the SCI animals were greater than in the same 
areas of intact animals (Fig. 6B, Fig. 6D, and Fig. 
6F, respectively.) 
 Quantitative analysis demonstrated that the 
fluorescent signal intensities of SCI animals were 
higher than those of intact animals in the whole 
area (Fig. 6I: intact: 56.7 ± 9.5,  n=4; SCI: 91.4 ± 
15.2, n=4; p < 0.05), in the transverse fibers of the 
pons (Fig. 6J: intact: 88.5 ± 24.4, n=4; SCI: 144.1 
± 40.9, n=4; p < 0.05), and in the contralateral STN 
(Fig. 6K: intact: 190.6 ± 38.0, n=4; SCI: 350.1 ± 
66.4, n=4; p < 0.05), though fluorescent intensities 

Figure 5. Coronal brain sections (Bregma 0 mm) injected with AAV-8-CAG-GFP from intact (A) and SCI (B) animals. The boxed areas in A 
are C, E, and boxed areas in B are D, F, respectively. Quantification of signal intensity around the injection site (G), across the 
whole section (H), in the contralateral cortex (I), and at the corpus callosum (J).  Scale bars = 2 mm (A, B), 100 μm (C, D), 300 μm 
(E, F). * p<0.05, ** p<0.01. 
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around the injection site in the SN did not differ 
(Fig. 6H: intact: 745.3 ± 103.4, n=4; SCI: 750.1 ± 
107.2, n=4). These results indicate that there was 
enhanced inter-nucleus connections within brain 
stem induced by SCI, especially in ipsilateral SN to 
contralateral STN connections, which were 
detectable using the AAV-8-CAG-GFP viral vector.

4 Discussion

 In this study, we demonstrated that serotype 8 
was the most useful for neuronal tracing in the 
brain. First, in terms of transduction properties, 
GFP+ fluorescent signals were observed at the 
injection sites for all three AAV serotypes used in 
the current study. These signals were localized 
around the injection sites and did not spread to 
other areas of the brain. These observations are 
consistent with those of other studies that have 
investigated the potential of AAV vectors for neural 
tracing in the brain 17, 31）.
 Second, in terms of anterograde migratory 
capability, AAV-8 displayed distinct properties for 
tracing neural pathways in the brain. Following 
microinjection of the AAV-8-CAG-GFP viral vector, 
we observed migration from the cortex to the brain 
stem. Although we did not find differences between 

the three AAVs at the level of the internal capsule, 
we did observe higher florescent signals at the 
cerebral peduncle following AAV-8-CAG-GFP viral 
vector injection; this observation indicates that 
AAV-8 has greater migratory capabilities compared 
to AAV-2 and AAV-5.
 Th i rd ,  we  observed  in te rhemispher i c 
projections across the corpus callosum to confirm 
the specificity of cell labeling of the AAV serotype 8 
neural tracer with both AAV8-CAG-GFP and AAV-
8-CAG-tdTomato viral vectors and confocal 
microscopy. Injection sites in both hemispheres 
showed similarly intense fluorescent signals, and 
high-power confocal imaging revealed that 
projection fibers with GFP+ fluorescence could be 
clearly detected in the opposite cortex through the 
corpus callosum. GFP+ cells and fibers were not co-
localized with tdTomato+ cells and fibers; this 
cellular specificity is another unique property of 
AAV-8-CAG-GFP and AAV-8-CAG-tdTomato viral 
vectors in rodent. Thus, AAV-8  with a CAG 
promotor used in this study resulted in specific cell 
labeling. Taken together, AAV-8 could be the most 
useful serotype for tracing changes in neural 
pathways following SCI compared to the AAV-2 and 
AAV-5 serotypes used in this study.

Figure 6. Schematic drawing of injection sites (green arrow) of AAV-8-CAG-GFP (A). Coronal brain sections (Bregma -6 mm) injected with 
AAV-8-CAG-GFP virus in intact (B) and SCI (C) animals. The boxed areas in B are D (transverse fiber of the pons) and F 
(contralateral STN). Boxed area in C are E (transverse fiber of the pons) and G (contralateral STN), for intact and SCI animals, 
respectively. Quantification of signal intensity around the injection site (H), across the whole section (I) in the transverse fiber of the 
pons (J) and in the contralateral STN (K).  Scale bars = 1 mm (B, C), 250 μm (D, E), and 100 μm (F, G). * p<0.05.



38 Ryosuke Hirota et al.

 Enhanced neural pathways was detected 
following AAV-8-CAG-GFP viral vector injection, 
both in terms of interhemispheric and inter-nucleus 
connections in this contusive SCI rat model, which 
we confirmed endogenous functional recovery 
evaluated with BBB scoring in the open field test in 
this study. While previous studies reported that 
interhemispheric networks are poorly detectable in 
healthy human subjects through MRI diffusion 
tensor imaging  33）,  and also   inter-nucleus 
connection (the SN to contralateral STN connection) 
within the brain stem are shown using intact 
rats 34）. However, these dormant pathways were 
significantly enhanced in SCI animals in this study. 
The precise role of these pathways following the 
SCI are not known; it has been reported, however, 
that brain network reorganization occurs during 
recovery from SCI to enhance activation of dormant 
connectivity 6, 35）. Thus, the changes we observed in 
brain regions following SCI observed in the current 
study could be partially associated with the 
mechanisms promoting endogenous recovery, 
though these enhancements in neural connectivity 
alone might not be sufficient to provide full 
recovery.
 In the current study, we employed methods of 
both precise delivery of AAV-8-CAG-GFP/tdTomato 
v i ra l  vec tors  t o  the  l o ca l i zed  reg ion  and 
sophisticated computerized quantitative analysis 
using a software with high quality microscopic 
images. Combination of these methods is widely 
used to demonstrate quantitative analysis of neural 
traceability.
 In summary, we have shown that AAV-8-CAG-
GFP/tdTomato viral vectors are the most useful 
neural tracers for visualizing the reorganization of 
neural connections in the brain following SCI. 
Future studies with application of both AAV-8-
CAG-GFP/tdTomato viral  vectors and this 
consistent SCI model system will provide valuable 
data for elucidating potential cellular mechanisms 
associated with improved functional outcomes 
following potential therapeutic interventions.
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脊髄損傷後の脳における神経連絡の賦活化
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【背景】

　これまでに脊髄損傷後に生じる脳内の神経経路の再

構築が，Positron Emission Tomography や MRI 
diffusion tensor imaging などを用いて報告されてい

るが，詳細な神経解剖学的手法を用いた報告は少ない．

本研究の目的は順行性神経トレーサーとして知られる

アデノ随伴ウイルス（AAV）を用いて，脊髄損傷後

の脳内における神経回路の変化を詳細に解析すること

である．

【方法】

　第 1 に，正常ラット（SD, 250-300g）を用いて，

CAGプロモーターを搭載したGFP発現AAVベクター

（2 型・5 型・8 型）をそれぞれ片側大脳半球に局所注

入し，GFP の蛍光輝度を定量することで AAV の脳内

における形質導入効率，順行性追跡能，細胞選択的標

識能が高い血清型を確認した．第2に，IHインパクター

を用いて脊髄損傷モデルラットを作成し，適切な

AAV ベクターを大脳皮質および黒質周囲に局所注入

し，脊髄損傷後に生じる脳内の神経経路の変化を解析

した．

【結果】

①　3 種の血清型では，局所注入部位において，各血

清型での GFP の蛍光輝度に有意差を認めず，形

質導入効率には差が無かった．

②　一方，GFP の蛍光輝度は，内包では各血清型で

の GFP の蛍光輝度に有意差を認められなかった

が，大脳脚では 8 型 (AAV-8-CAG-GFP) を局

所注入した群で有意に強い GFP の蛍光輝度を認

めたことから，順行性追跡能は 8 型が最も高い

ことがわかった．

③　AAV-8-CAG-GFP を右大脳皮質に局所注入した

結果，AAV-8-CAG-GFP は脳梁を介して，左側

の大脳皮質にまで到達し，GFP 陽性の神経線維

を確認することが出来た．また，AAV-8-CAG-

tdTomato を左大脳皮質に局所注入した結果，局

所において tdTomato が形質導入された神経細胞

や線維と，GFP 陽性の神経細胞や線維は共存し

ておらず，AAV-8-CAG ベクターの高い細胞選

択的標識能を確認した．

④　脊髄損傷モデルを作成した後に，AAV-8-CAG-

GFP を右大脳皮質に局所注入した結果，脳梁を

介した左側皮質への神経経路が賦活化されていた．

⑤　脊髄損傷モデルを作成した後に，AAV-8-CAG-

GFP を右黒質周囲に局所注入した結果，右黒質

-左視床下核間の神経経路が賦活化されていた．

【結論】

　CAG プロモーターを搭載した AAV-8 は，脳内に

おける形質導入効率，順行性追跡能，細胞選択的標識

能が高いことが判明した．さらに，同ベクターを用い

て，脊髄損傷後の脳を解析した結果，神経回路の賦活

化が生じていることが示唆された。


