

Sapporo Medical University Information and Knowledge Repository

Title 論文題目	Effect of Memantine on Brain Metabolic Activity and Perfusion in Drug-naïve Moderate Alzheimer's Disease Patients (未治療の中等度進行アルツハイマー型認知症を対象とした 脳代謝と血流に関するメマンチンの効果)		
Author(s) 著 者	岩本, 倫		
Degree number 学位記番号	甲第 2987 号		
Degree name 学位の種別	博士(医学)		
Issue Date 学位取得年月日	2018-03-31		
Original Article 原著論文	札幌医学雑誌 第87巻 第1号(平成31年3月)掲載予定		
Doc URL			
DOI			
Resource Version	Author Edition		

|--|

 $\mathbf{2}$

3	Effect of Memantine on Brain Metabolic Activity and Perfusion in Drug-naïve				
4	Moderate Alzheimer's Disease Patients				
5	Tomo Iwamoto ¹ , Kumiko Utsumi ^{*, 2} , Seiju Kobayashi ^{1, 3} , Shuichi Yasumura ² , Shigeki				
6	Hatakeyama ¹ , Ayako Hayashi ³ , Chiaki Kawanishi ¹				
7	¹ Department of Neuropsychiatry, Sapporo Medical University, School of Medicine,				
8	Sapporo, Japan				
9	² Department of Psychiatry, Sunagawa City Medical Center, Sunagawa, Japan				
10	³ Department of Psychiatry, Nakae Hospital, Sapporo, Japan				
11					
12	Corresponding author: Kumiko Utsumi*, MD, PhD, Department of Psychiatry,				
13	Sunagawa City Medical Center, 1 – 1, Nishi 4, Kita 3, Sunagawa, Japan;				
14	Tel: +81-125-54-2131, Fax: +81-125-54-0101; e-mail: 2017utsumi@gmail.com				
15	Keywords: Alzheimer's disease, memantine, 18F-FDG, PET, 99mTc-ECD, SPECT,				

17

16

MMSE, NPI

18 Abstract

19	Objective: Memantine is a noncompetitive N-methyl-D-aspartate receptor (NMDAR)
20	antagonist that improves or stabilizes cognitive impairment in moderate to severe
21	Alzheimer's disease (AD). However, the effects of memantine on regional brain
22	metabolic activity and perfusion are not fully known. To clarify these effects, we
23	investigated the efficacy of memantine monotherapy using multimodal neuroimaging in
24	drug-naïve patients with moderate AD.
25	Methods: This was a prospective open-labeled study of patients with drug-naïve
26	moderate AD before and after 12 weeks of treatment with memantine, conducted
27	between April 2015 and December 2016. Imaging was performed using
28	18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) and
29	99mTc-ethyl cysteinate dimer-single photon emission computed tomography
30	(99mTc-ECD-SPECT), to assess brain metabolic activity and perfusion, respectively.
31	The imaging data, registered to a probabilistic anatomical atlas, were evaluated by
32	voxel-based analysis.
33	Results: A total of 20 patients were enrolled and 17 patients' imaging datasets were
34	analyzed. Brain regions with increased metabolic activity following memantine
35	treatment in previously drug-naïve AD patients included a wide range of cerebral

 $\mathbf{2}$

36	cortexes, particularly the right inferior parietal lobule, right supramarginal gyrus, right
37	angular gyrus, and right paracentral lobule ($p < 0.01$, paired t-test). Only small regions
38	had increased brain perfusion ($p < 0.01$, paired t-test).
39	Conclusion : We believe this is the first study focusing on brain metabolic activity and
40	perfusion in the same drug-naïve moderate AD patients before and after memantine
41	treatment. There were inconsistencies between the regions with increased metabolic
42	activity and perfusion after memantine treatment in drug-naïve AD patients, suggesting
43	that brain metabolism may increase without a concurrent increase in blood perfusion.
44	This study may help elucidate the mechanism of action of memantine.
45	

47 Introduction

48	Alzheimer's disease (AD) is the most common dementia, and the development of drug
49	therapies for AD have advanced in recent years. Based on the pathophysiology
50	hypothesis of AD, two drug types, N-methyl-D-aspartate receptor (NMDAR)
51	antagonists and cholinesterase inhibitors (ChEIs), have been used clinically in AD
52	patients to date.
53	Memantine, the only noncompetitive NMDAR antagonist, has been used clinically, to
54	improve or stabilize cognitive impairment in moderate to severe AD [1, 2]. However,
55	the effects of memantine on regional brain metabolic activity and perfusion are not fully
56	known.
57	Regional perfusion on single photon emission computed tomography (SPECT) is
58	typically reduced in the parietal, temporal lobe, and posterior cingulate regions of AD
59	patients [3-7]. 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET)
60	measures regional cortical metabolic activity and has found that the metabolic rate in
61	the parietal and temporal cortex is reduced early in the course of AD [8,9]. Cortical
62	metabolism declines as Alzheimer's disease progresses [10-13].
63	It has been reported that the degree of uptake on 18F-FDG-PET and 99mTc-ethyl
64	cysteinate dimer-SPECT (99mTc-ECD-SPECT) in patients with AD and mild cognitive

65 impairment shows significant correlations in the frontal, temporal, and parietal lobes.

66 [14].

67	Many previous studies have measured perfusion and metabolic activity in AD patients
68	treated with ChEIs. ChEIs treatment increases cortical blood flow in the frontal lobe [15,
69	16], the right anterior cingulate, the dorsolateral prefrontal, and the temporoparietal
70	areas bilaterally [17]. Another study demonstrated that ChEIs preserve cortical blood
71	flow in right middle temporal gyrus [18] and the occipital precuneus [19]. Treatment
72	with ChEIs has a positive effect on cerebral metabolism in the frontal region [20].
73	However, no previous study has measured changes in regional brain perfusion in
74	patients with AD before and after memantine treatment. Additionally, studies about
75	brain metabolic activity measured by 18F-FDG-PET in AD patients treated with
76	memantine are a few. Sultzer et al. reported that metabolic activity in the bilateral
77	inferior temporal gyri and angular gyri and supramarginal gyri increased after 10 weeks
78	of memantine treatment in patients with AD on stable ChEI medication [21]. However,
79	no previous study has simultaneously examined 18F-FDG-PET and
80	99mTc-ECD-SPECT on the same drug-naïve AD patients after memantine treatment
81	alone.

82 It remains to be clarified how change in brain metabolic activity and perfusion occurs in

 $\mathbf{5}$

83	previously drug-naïve AD patients after memantine treatment alone. Another question is
84	whether the effects of memantine treatment assessed by brain functional imaging such
85	as 99mTc-ECD-SPECT and 18F-FDG-PET are similar. To answer these questions, we
86	investigated the efficacy of 12 weeks of memantine monotherapy using multimodal
87	imaging (18F-FDG-PET and 99mTc- ECD-SPECT) in drug-naïve patients with
88	moderate AD.
89	
90	Materials and Methods
91	Study design
92	This study was conducted between April 2015 and December 2016. Drug-naïve patients
93	with moderate AD underwent imaging assessments with 18F-FDG-PET and 99mTc-
94	ECD-SPECT. Each patient then received open-label treatment with memantine for 12
95	weeks, and the clinical assessments and imaging assessments were repeated after the
96	treatment.
97	
98	Participants
99	Twenty participants (6 men and 14 women) who had been diagnosed with Alzheimer's
100	disease (AD) were recruited from the outpatients of Sunagawa City Medical Center

101	Hospital for Psychiatry, Sunagawa, Japan. The inclusion criteria were: 1) patients who
102	met the clinical diagnosis of AD based on the criteria of both the Diagnostic and
103	Statistical Manual of Mental Disorders 5th edition (DSM-5) and the National Institute
104	on Aging-Alzheimer's Association (NIA-AA); and 2) patients with baseline MMSE
105	scores of 14 to 19.
106	Participants were excluded if they had the following: dementia due to other than
107	Alzheimer's disease; evidence of other neurologic or psychiatric disorders; any
108	medication with central nervous system activity; having serious health problems, and
109	abnormal results of biochemical analysis that may affect cognition. All candidate
110	patients were examined by experienced psychiatrists and received full clinical
111	assessment, which included standard dementia screening with the Mini-Mental State
112	Examination (MMSE), routine blood tests with complete blood count, biochemistry,
113	thyroid function tests, vitamin levels, standard urine analysis. MMSE and
114	Neuropsychiatric Inventory (NPI) assessments were made for each patient on the day
115	they visited for SPECT scans. Informed written consent was obtained from all included
116	participants and their relatives.
117	This study was carried out according to the Declaration of Helsinki. Each participant's
118	privacy was protected, and the protocol was approved by the Ethics and Radiation

 $\mathbf{7}$

119	Safety	Committees	of Sunagawa	City Hos	pital. S	unagawa.	Japan.

121	Memantine	treatment
141	monutin	ti cutilicilit

- 122 On the day following 18F-FDG-PET imaging, patients started taking open-label
- memantine 5 mg once daily. The dosage was increased over 4 weeks, rising 5 mg per
- 124 week to a final dosage of 20 mg once daily.
- 125

126	Clinical	assessments
120	Chincar	assessments

- 127 Each participant's dementia symptoms were assessed using the MMSE and NPI. The
- 128 MMSE was included as an overall measure of cognitive impairment. The NPI assesses
- 129 behavioral and psychological disturbances occurring in patients with dementia. Both the
- 130 severity and frequency of each symptom were measured, and this information was
- 131 obtained from a caregiver familiar with the patient [22].
- 132
- 133 18F-FDG-PET imaging
- 134 PET imaging of cerebral metabolic activity in the resting state was performed using a
- 135 Discovery PET/CT 600 scanner (GE Health care, Milwaukee, WI, USA). Each
- 136 participant received an intravenous injection of 169.5–325.6 MBq 18F-FDG purchased

137	from Nihon Medi-Physics Co., Ltd. Participants rested quietly in a dimly-lit room
138	during the 40-minute uptake phase. They were then positioned symmetrically dorsally
139	in the scanner. For the acquisition of PET imaging, a 15-minute emission scan in
140	list-mode was performed after the CT scan for attenuation correction. PET images were
141	reconstructed with 3D ordered subset expectation maximization (VUE Point HD).
142	
143	99mTc- ECD-SPECT imaging
144	Each participant received a 444.0-1085.0 MBq intravenous injection of 99mTc-ECD as
145	a commercially supplied kit (Neurolite [®] injection Daiichi; Fujifilm RI Pharma, Japan)
146	while lying down with their eyes closed in a quiet room. Nine minutes after the
147	injection of 99mTc-ECD, brain SPECT was performed for 20 minutes using an E.CAM
148	Signature Series scanner (Toshiba Medical Systems Corporation, Tokyo, Japan)
149	equipped with a low energy high resolution collimator. Projection data were obtained in
150	continuous mode, for 90 steps of 360° at 4° per step. The scanned data were prefiltered
151	with a Butterworth filter (order 8 and a cut off at 0.11 cycles/ pixel). Brain images were
152	reconstructed with filtered back projection. Attenuation correction was performed using
153	Chang's method.

155 Imaging and Data analyses

PET and SPECT data were analyzed using PMOD 3.5 software (PMOD Technologies, 156LLC, Switzerland) and statistical parametric mapping 8 (SPM8; Wellcome Trust 157158Centre for Neuroimaging) in Matlab 8 (MathWorks, Inc. Natick, MA, USA). Initially, all imaging data after the reconstruction was re-positioned, and then cortical metabolic 159160 activities were corrected by the standardized uptake value (SUV) of 18F-FDG using 161 PMOD. PET images were normalized to Montreal Neurological Institute (MNI) atlas space using the PET template in SPM8 and smoothed using an 8 mm Gaussian filter. 162163 SPECT data were also normalized to MNI atlas space using the SPECT template in SPM8 smoothed with an 8 mm Gaussian filter. The global mean uptake in the entire 164brain was estimated by region-of-interest analysis referring to the Automated 165Anatomical Labeling (AAL) atlas, and then the SPECT brain perfusion pattern was 166 evaluated by the whole brain uptake ratio (WBR). PET and SPECT images in the 167168 baseline condition (pre-memantine treatment) were compared with the post-treatment 169 condition (after 12 weeks of memantine treatment) using the paired t test procedure in SPM8, with p < 0.01 for PET and SPECT at the voxel level, respectively. In addition 170171to the SPM analysis, volume of interest (VOI) analysis was performed utilizing VOIs defined in the PMOD AAL atlas. Each PET (SUV) and SPECT (WBR) value of each 172

173	VOI was	obtained from	n normalized	l images.	SUV	and WBR	values	between	baseli
110	v OI was	obtained not		i iiiiages.	SUV		values	UCLWCCII	Uastin

- and post treatment were compared using paired t-tests.
- 175
- 176 Statistical analysis
- 177 Statistical analyses were performed with the R Statistical Software Package version
- 178 3.1.0 (R Core Team. Foundation for Statistical Computing, Vienna, Austria).
- 179 Descriptive statistics and frequency distributions of baseline demographics and
- 180 cognitive scores were summarized. Data from clinical assessments were analyzed using
- 181 paired t-tests for comparison between baseline and after 12 weeks of memantine
- 182 treatment. Statistical significance was set at p < 0.01.
- 183
- 184 **Results**
- 185 Patient Characteristics

```
186 Of the 20 patients enrolled three were excluded from the analysis: One patient was not
```

- 187 administrated with memantine at first visit, one lacked second scan data due to health
- 188 reasons not related to memantine administration, and the third was revealed to have
- 189 Lewy body dementia. The other 17 patients consisted of 6 men and 11 women, with an
- average age of 80.1 (6.2) years old. At baseline the mean (standard deviation [SD])

191	onset age was 78.3	6.7) years old,	mean education 9.5	(1.2) years,	and the average
-----	--------------------	-----------------	--------------------	--------------	-----------------

- body weight 55.3 (13.5) kg. The average MMSE was 16.6 (1.8) at baseline and 16.9
- 193 (4.1) post-treatment. The average NPI score was 2.8 (7.6) at baseline and 3.9 (9.2)
- 194 post-treatment. The patient characteristics are shown in Table 1.

- 196 Changes in brain metabolic activity
- 197 Brain regions showing significant increases in brain metabolism are highlighted in
- 198 Figure 1. Significant increases in metabolic activity were observed in wide range of
- 199 whole cerebral cortical areas. VOIs showing significant increases in SUV were
- 200 observed in the right inferior parietal lobule, right supramarginal gyrus, right angular
- 201 gyrus, and right paracentral lobule (Table 2).

202

203 Changes in cerebral blood flow

Brain regions with significant increases in cerebral blood flow are shown in Figure 2.

- 205 Although a wide range of whole cerebral cortexes showed significant increases in brain
- 206 metabolism (Figure 1), the brain regions in which significant increases in cerebral blood
- 207 flow occurred were quite limited. No regions had VOIs with significant increases in

208 WBR.

210	Discussion
211	This study shows, for the first time, a significant increase in brain metabolic activity in
212	wide range of whole cerebral cortexes in drug-naïve AD patients after 12-weeks of
213	memantine treatment alone. Additionally, we revealed that only a limited number of
214	brain regions showed significant increases in cerebral blood flow after 12 weeks of sole
215	memantine treatment in the same previously drug-naïve AD patients.
216	The regions of metabolic increases in this study were wider than those seen in the
217	previous study by Sultzer et al. [21]. We speculate that the difference in the ranges of
218	the two studies might be due to the different study designs. While we administered
219	memantine to drug-naïve AD patients, Sultzer et al. added memantine treatment to
220	patients on stable ChEI medication, and so the effect of memantine alone could not be
221	assessed in their study. Actually, increased brain metabolism in left prefrontal cortex
222	was demonstrated in a previous study of ChEI treatment [23]. Conversely, the metabolic
223	increases in the angular and supramarginal gyri observed in our study were consistent
224	with that observed by Sultzer et al. [21]. We speculate that the increased metabolic
225	activity in these regions was due to memantine.

226 This is the first study to investigate the same drug-naïve AD patients before and after

227	memantine treatment using 18F-FDG-PET and 99mTc-ECD-SPECT. We found that the
228	regions with increased activity on 18F-FDG-PET and 99mTc-ECD-SPECT were not
229	consistent. This suggests that the increase in brain metabolism following memantine
230	treatment is not directly caused by an increase in regional blood flow.
231	The targets of memantine, NMDARs, are one of the key players in pathophysiology of
232	AD [24,25]. There are two types of NMDARs, synaptic NMDARs (sNMDARs) and
233	extrasynaptic NMDARs (eNMDARs). It is believed that eNMDARs are linked to cell
234	death signaling, and that sNMDARs are associated with cell survival signal [26,27]. In
235	AD patients, $A\beta$ accumulation sequentially induces astrocytic glutamate release,
236	increases of eNMDAR activity, and synaptic loss due to eNMDAR-mediated
237	excitotoxicity [26,28-31]. Furthermore, eNMDAR activation impairs long-term
238	potentiation through excessive Ca ⁺ influx, which also impairs neuronal plasticity
239	[32,33]. The loss of synapses and the impairment of neuronal plasticity induced by
240	eNMDAR activation are most likely the causes of learning and memory impairment
241	[24,26].
242	The therapeutic mechanisms of memantine could involve preferentially blocking
243	eNMDAR activation [34] and its downstream signaling, enhancing neuronal survival
244	and synaptic plasticity, and suppressing the impairment of long term potentiation in

245	brains of AD patients. We hypothesize that enhancement of neuronal survival and
246	synaptic plasticity, and normalization of long term potentiation caused by blockage of
247	eNMDAR, might increase brain metabolism before cerebral blood flow is increased by
248	synaptic dysfunction recovery.
249	Chen et al. reported that the potentiation of brain-derived neurotrophic factor (BDNF)
250	levels in serum and brain are observed in rats treated with low-dose memantine [35].
251	BDNF plays crucial roles in neuronal survival, neurotransmitter modulation, and leads
252	to neuronal plasticity throughout its tyrosine kinase receptors B [36,37]. In addition,
253	BDNF shows neuroprotective activity by increasing sNMDAR activity and reducing
254	eNMDAR activity [38]. Such neurotrophic effects of memantine might cause
255	neuroprotection and neuro-regeneration, and inhibit memory impairment in AD patients.
256	There are limitations to our study. As this study was an open-label single arm
257	exploratory study with a small number of patients ($n = 17$), additional larger scale
258	double-blind, placebo-controlled studies are necessary for further verification of our
259	findings.
260	We believe this is the first study focusing on brain metabolic activity and perfusion in
261	the same moderate AD patients before and after memantine treatment. Our findings
262	suggest that memantine, independently from any increase in blood flow, improves brain

263	metabolism in patients with moderate AD.
264	
265	Acknowledgements
266	The authors thank all participants who took part in this study, and especially wish to
267	thank Mr. Masahiro Oka and Mr. Kazuhito Kawasaki for technical assistance in
268	conducting the PET and SPECT scans.
269	
270	Funding
271	This study was funded by Daiichi-Sankyo Co., Ltd. The funders had no role in study
272	design, data collection and analysis, decision to publish, or preparation of the
273	manuscript.
274	
275	Competing and conflicting interests
276	The authors declare that they have no competing interests.
277	
278	References
279	1. Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe
280	Alzheimer's disease. N. Engl. J. Med 348(14), 1333-1341 (2003).

281	2.	Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with
282		moderate to severe Alzheimer's disease already receiving donepezil: a randomized
283		trial. JAMA 201, 317-324 (2004).
284	3.	Holman BL, Johnson KA, Gerada B, et al. The scientigraphic appearance of
285		Alzheimer's disease: a prospective study using technetium-99m-HMPAO SPECT. J.
286		Nucl. Med 33, 181-185 (1992).
287	4.	Bartenstein P, Minoshima S, Hirsch C, et al. Quantitative assessment of cerebral
288		blood flow in patients with Alzheimer's disease by SPECT. J. Nucl. Med 38(7),
289		1095-1101 (1997).
290	5.	Bonte FJ, Weiner MF, Bigio EH, et al. SPECT imaging in dementias. J. Nucl. Med
291		42(7), 1131-1133 (2001).
292	6.	Pagani M, Salmaso D, Ramstrom C, et al. Mapping pathological 99mTc-d,
293		I-Hexamethylpropylene amine oxime uptake in Alzheimer's disease and frontal
294		lobe dementia with SPECT. Dement. Geriatr. Cogn. Disord 12: 177-184 (2001).
295	7.	Johnson KA, Holman BL, Mueller SP, et al. Single photon emission computed
296		tomography in Alzheimer's disease. Abnormal iofetamine I 123 uptake reflects
297		dementia severity. Arch. Neurol 45(4), 392-396 (1988).

- B. Duara R, Grady C, Haxby J, Sundaram M, *et al.* Positron emission tomography in
 Alzheimer's disease. *Neurology* 36(7), 879-887 (1986).
- 300 9. Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia.
- 301 Br. J. Radiol 80, S160-S167 (2007).
- 10. Engler H, Forsberg A, Almkest O, *et al.* Two-year follow-up of amyloid deposition
- in patients with Alzheimer's disease. *Brain* 129, 2856-2866 (2006).
- 11. Hirono N, Hashimoto M, Ishii K, et al. One-year change in cerebral glucose
- metabolism in patients with Alzheimer's disease. *Am. J. Psychiatry Clin. Neurosci*16, 488-492 (2004).
- 307 12. Alexander G, Chen K, Pietrini P, et al. Longitudinal PET Evaluation of cerebral
- 308 metabolic decline in Dementia: A potential Outcome measure in Alzheimer's
- disease treatment studies. Am. J. Psychiatry 159, 738-745 (2002).
- 310 13. Stefanova E, Wall A, Almkvist O, et al. Longitudinal PET evaluation of cerebral
- 311 glucose metabolism in rivastigmine treated patients with mild Alzheimer's disease.
- 312 J. Neural. Transm 113(2), 205-218 (2006).
- 313 14. Ito K, Shimano Y, Imabayashi E, et al. Concordance between (99m)Tc-ECD
- 314 SPECT and 18F-FDG PET interpretations in patients with cognitive disorders
- 315 diagnosed according to NIA-AA criteria. Int. J. Geriatric Psychiatry 29(10),

- 316 1079-1086 (2014).
- 317 15. Shimizu S, Kaneta H, Hirose D, et al. Differential effects of acetylcholinesterase
- inhibitors on clinical responses and cerebral blood flow changes in patients with
- Alzheimer's disease: A 12-month, randomized, and open-label trial. *Dement*.
 Geriatr. Cogn. Disord. Extra 5, 135-146 (2015).
- 16. Cerci S, Tamam Y, Kaya H, et al. Effect of Rivastigmine on regional cerebral blood
- flow in Alzheimer's disease. *Advances in Therapy* 24(3), 611-621 (2007).
- 17. Ceravolo R, Volterrani D, Tognoni G, *et al.* Cerebral perfusional effects of
 cholinesterase inhibitors in Alzheimer's disease. *Clin. Neuropharmacol* 27(4),
 166-170 (2004).
- 18. Nakano S, Asada T, Matsuda H, *et al.* Donepezil hydrochloride preserves regional
 cerebral blood flow in patients with Alzheimer's disease. *J. Nucl. Med* 42(10),
 1441-1445 (2001).
- 19. Nobili F, Koulibaly M, Vitali P, *et al.* Brain perfusion follow-up in Alzheimer's
 patients during treatment with acetylcholinesterase inhibitors. *J. Nucl. Med* 43(8),
 983-990 (2002).
- 20. Keller C, Kadir A, Forsberg A, *et al.* Long-term effects of galantamine treatment on
 brain functional activities as measured by PET in Alzheimer's disease patients. J.

- 334 *Alzheimer's Disease* 24, 109-123 (2011).
- 335 21. Sultzer D, Melrose R, Harwood D, et al. Effect of memantine treatment on regional
- 336 cortical metabolism in Alzheimer's disease. *Am. J. Geriatr. Psychiatry* 18, 606-614
- 337 (2010).
- 22. Cummings JL, Mega M, Gray K, *et al.* The Neuropsychiatric Inventory:
 comprehensive assessment of psychopathology in dementia. *Neurology* 44(12),
 2308-2314 (1994).
- 341 23. Teipel SJ, Drzezga A, Bartenstein P, *et al.* Effects of donepezil on cortical
 342 metabolic response to activation during (18)FDG-PET in Alzheimer's disease: a
- double-blind cross-over trial. *Psychopharmacology* 187(1), 86-94 (2006).
- 344 24. Zhang Y, Li P, Feng J, et al. Dysfunction of NMDA receptors in Alzheimer's
- 345 disease. *Neurol. Sci* 37(7), 1039-47 (2016).
- 346 25. Banding H. Therapeutic targeting of the pathological triad of extrasynaptic NMDA
- receptor signaling in neurodegenerations. J. Exp. Med 214(3) 569-578 (2017).
- 348 26. Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central
- nervous system disorders. *Neuron* 82, 279-293 (2014).

350	27.	Huang Y, Shen W, Su J, et al. Modulating the balance of synaptic and extrasynaptic
351		NDMA receptors shows positive effects against amyloid- β -induced neurotoxicity. J.
352		Alzheimer's Dis 57(3), 885-897 (2017).
353	28.	Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and
354		problems on the road to therapeutics. Science 297(5580), 353-356 (2002).
355	29.	Parameshwaran K, Dhanasekaran M, Suppiramaniam V. Amyloid beta peptides and
356		glutamatergic synaptic dysregulation. Exp. Neurol 210(1), 7-13 (2008).
357	30.	Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic
358		biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9(1), 119
359		(2010).
360	31.	Talantova M, Sanz-Blasco S, Zhang X, et al. Aß induces astrocytic glutamate
361		release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl.
362		Acad. Sci. U S A 110(27), E2518-2527 (2013).

- 32. Hanson JE, Pare JF, Deng L, et al. Altered GluN2B NMDA receptor function and 363
- synaptic plasticity during early pathology in the PS2APP mouse model of 364
- Alzheimer's disease. Neurobiol. Dis 74, 254-262 (2015). 365

366	33. Li S, Jin M,	Koeglsperger T.	et al. Soluble Aß	oligomers	inhibit long-term
	,				

- 367 potentiation through a mechanism involving excessive activation of extrasynaptic
- 368 NR2B-containing NMDA receptors. J. Neurosci 31(18), 6627-6638 (2011).
- 369 34. Xia P, Chen HS, Zhang D, et al. Memantine preferentially blocks extrasynaptic
- 370 over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci
- 371 30(33), 11246-11250 (2010).
- 372 35. Chen SL, Tao PL, Chu CH, et al. Low-dose memantine attenuated morphine
- addictive behavior through its anti-inflammation and neurotrophic effects in rats. J.
- 374 *Neuroimmune Pharmacol* 7, 444-453 (2001).
- 375 36. Harward SC, Hedrick NG, Hall CE, et al. Autocrine BDNF-TrkB signalling within
- a single dendritic spine. *Nature* 538(7623), 99-103 (2016).
- 377 37. Kocahan S, Doğan Z. Mechanisms of Alzheimer's disease pathogenesis and
- 378 prevention: the brain, neural pathology, N-methyl-D-aspartate receptors, tau protein
- and other risk factors. *Clin. Psychopharmacol. Neurosci* 15(1), 1-8 (2017).
- 380 38. Lau D, Benqtson CP, Buchthal B, et al. BDNF reduces toxic extrasynaptic NMDA
- 381 receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced
- 382 transcription of inhba/activin A. *Cell Rep* 12(8) 1353-1366 (2015).

384	Figure]	Legends
001		

386	Figure 1:	Statistical map	os of higher	metabolic	activity after	12 weeks	s of memantine
			2)		2		

- 387 treatment compared with baseline.
- 388 Regions with significantly higher metabolism (p < 0.01; paired t-test) superimposed on
- a standard 3-dimensional anatomic template (3D-render) (A) and co-registered MRI
- 390 slices (B).

391

392 Figure 2: Statistical maps of higher cerebral blood flow after 12 weeks of memantine

- 393 treatment compared with baseline.
- Regions with significantly higher blood flow (p < 0.01; paired t-test) superimposed on a
- 395 standard 3-dimensional anatomic template (3D-render) (A) and co-registered MRI slices

396 (B).

397

399 **Figure 1**

400 (A)

401

402 (B)

Figure 2

405 (A)

407 (B)

410 Tables

- 411
- 412 **Table 1:** Baseline demographic characteristics and clinical assessment scores at baseline
- 413 and after 12 weeks memantine treatment

Characteristics	Baseline	Posttreatment	P value ^{d)}	
	(n = 17)	(n = 17)		
Men ^{a)}	6 (35)		—	
Women ^{a)}	11 (65)		—	
Age, mean (SD), y	80.1 (6.2)		—	
On set age, mean (SD),y	78.3(6.7)			
Education, mean (SD), y	9.5 (1.2)		—	
Weight, mean (SD), kg	55.3 (13.5)		—	
MMSE score ^{b)} , mean (SD)	16.6 (1.8)	16.9 (4.1)	0.75	
NPI score ^{c)} , mean (SD)	2.8 (7.6)	3.9 (9.2)	0.11	

414 Abbreviations: MMSE, Mini-mental State Examination; NPI, Neuropsychiatric

415 Inventory.

416 a) Data are No. (%).

b) Lower score reflects greater cognitive impairment

418 c) Lower score reflects fewer behavioral and psychological symptoms.

419 d) Paired t test, post-treatment versus baseline (df = 16).

420

Table 2. VOIs showing significant increases (p < 0.01) in SUV or WBR after 12 weeks of memantine treatment.

	FDG-PET(SUV)			ECD-SPECT(WBR)		
VOI	baseline	post-	Р	baseline	post-	Р
		treatment	value ^{a)}		treatment	value ^{a)}
Inf_Parietal_r	6.07	7.04	0.009	0.98	0.98	0.952
Supra_Marginal_r	5.99	6.84	0.009	1.05	1.06	0.445
Angular_r	6.07	7.02	0.009	0.97	1.00	0.035
Paracentral_Lobule_r	5.97	6.84	0.006	1.07	1.06	0.305

423 Abbreviations: SUV, standardized uptake value; WBR, whole brain ratio; Inf_Parietal_r,

right angular gyrus; Paracentral_Lobule_r, right paracentral lobule; VOI, volume of

426 interest.

427 a) Paired t test, post-treatment versus baseline (df = 16).

right inferior parietal lobule; Supra_Marginal_r, right supramarginal gyrus; Angular_r,