
 

 

 

 

 

SAPPORO MEDICAL UNIVERSITY INFORMATION AND KNOWLEDGE REPOSITORY 
 

 

 

Title 

論文題目 

SIRT1 deficiency interferes with membrane resealing after cell 

membrane injury. 

（SIRT1の欠損は細胞膜損傷後の修復を阻害する） 

Author(s) 

著  者 藤原, 大輔 
 

Degree number 

学位記番号 

 

甲第 3069号 

Degree name 

学位の種別 
博士（医学） 

Issue Date 

学位取得年月日 

 

2019-09-30 

Original Article 

原著論文 

PLoS One. 2019 Jun 26;14(6):e0218329. doi: 

10.1371/journal.pone.0218329. eCollection 2019. 
PMID: 31242212 

Doc URL 

 

DOI 
 

Resource Version 

Publisher Version 

 



RESEARCH ARTICLE

SIRT1 deficiency interferes with membrane

resealing after cell membrane injury

Daisuke Fujiwara1☯, Naotoshi Iwahara1,2☯, Rio Sebori1☯, Ryusuke Hosoda1,

Shun Shimohama2, Atsushi KunoID
1, Yoshiyuki HorioID

1*

1 Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan,

2 Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Japan

☯ These authors contributed equally to this work.

* horio@sapmed.ac.jp

Abstract

Activation of SIRT1, an NAD+-dependent protein deacetylase, ameliorates muscular patho-

physiology of δ-sarcoglycan-deficient TO-2 hamsters and dystrophin-deficient mdx mice.

We found that SIRT1 was highly expressed beneath the cellular membranes of muscle

cells. To elucidate functional roles of SIRT1 on muscles, skeletal muscle-specific SIRT1

knockout mice (SIRT1-MKO) were generated. SIRT1-MKO mice showed muscular pathol-

ogy similar to mild muscular dystrophies with increased numbers of centrally nucleated

small myofibers and decreased numbers of middle-sized (2000–3001 μm2) myofibers com-

pared to those of wild-type (WT) mice. Accordingly, SIRT1-MKO mice showed significantly

decreased exercise capacity in treadmill and inverted hanging tests with higher levels of

serum creatine kinase activities compared with those in WT mice. Evans blue dye uptake

after exercise was greater in the muscles of SIRT1-MKO than those of WT mice, suggesting

membrane fragility in SIRT1-MKO mice. Because SIRT1 was dominantly localized beneath

the membranes of muscular cells, SIRT1 may have a new role in the membranes. We found

that levels of fluorescent FM1-43 dye intake after laser-induced membrane disruption in

C2C12 cells were significantly increased by SIRT1 inhibitors or Sirt1-siRNA compared with

those of control cells. Inhibition of SIRT1 or SIRT1-knockdown severely disturbed the

dynamic aggregation of membrane vesicles under the injured site but did not affect expres-

sion levels of membrane repair proteins. These data suggested that SIRT1 had a critical

role in the resealing of membrane-ruptured muscle cells, which could affect phenotypes of

SIRT1-MKO mice. To our knowledge, this report is the first to demonstrate that SIRT1

affected plasma-membrane repair mechanisms.

Introduction

Cycles of contraction and relaxation in skeletal muscles and cardiac cells induce cellular mem-

brane friction and strain that could cause membrane rupture. Plasma membrane disruption is

rapidly resealed by membrane repair mechanisms for cell survival [1]. Membrane resealing is

triggered by Ca2+ influx through the injured site, where Ca2+ activates Ca2+ binding proteins
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including calpain 3, which is involved in the resealing of membrane structures through their

Ca2+-dependent protease activity [1]. Accordingly, mutations in the calpain 3 gene cause limb

girdle muscular dystrophy type 2A [2]. F-actin is accumulated promptly at the site of mem-

brane disruption and annexins, phospholipid-interacting proteins with Ca2+-binding activity,

are also recruited to the injured site and contribute to membrane repair [3]. Dysferlin interacts

with negatively charged phospholipids in a Ca2+-binding manner and its genetic defects result

in limb girdle muscular dystrophy type 2B [4]. After membrane injury, intracellular small vesi-

cles containing dysferlin are recruited to the injured site and form a large vesicle to reseal

membranes [1]. Dysferlin interacts with mitsugumin 53 (MG53) and caveolin 3, which are

also essential to repair membrane damage [5]. Mutations of caveolin 3 cause limb girdle mus-

cular dystrophy 1C [6] and MG53 knockout mice show dystrophic phenotype [7].

An NAD+-dependent protein deacetylase SIRT1, one of seven members of the sirtuin fam-

ily, is a mammalian homologue of yeast Sir2 (silent information regulator 2), the overexpres-

sion of which elongates yeast lifespan [8]. SIRT1 localizes in nuclei and regulates gene

expression through deacetylation of nuclear proteins such as histones and transcriptional fac-

tors [8]. Because SIRT1 is a nucleo-cytoplasmic shuttling protein [9], it also regulates cytosolic

proteins including autophagic components. SIRT1 is expressed in the skeletal muscle cells

where it increases insulin sensitivity [10], improves mitochondrial function [11], promotes a

fiber shift from fast- to slow-twitch muscles and decreases expression levels of atrophy genes

[12].

Overexpression of SIRT1 in the skeletal muscles of mdx mice, a mouse model of Duchenne
muscular dystrophy, ameliorates muscular pathology, decreases blood creatine kinase (CK)

levels and increases exercise performance [12]. We have shown that pharmacological activa-

tion of SIRT1 by oral administration of resveratrol ameliorates pathological phenotypes of

skeletal muscles and hearts, decreases serum CK levels and improves muscular and cardiac

functions in mdx mice [13–17]. SIRT1 activated by resveratrol decreases cellular oxidative

stress levels by increasing SOD2 expression levels [18], suppressing NADPH oxidase expres-

sion [13], and promoting autophagy of damaged mitochondria via activation of FOXOs

[16,17]. Resveratrol inhibits the development of tissue fibrosis via promoting deacetylation

and degradation of transcriptional co-activator p300 [14], and increases expression levels of

muscle myosin heavy chains and troponins [13], which may be regulated by deacetylation and

activation of transcriptional co-activator PGC1α [8]. However, it remains unclear whether

membrane repair in the muscle cells is regulated by SIRT1.

In the present study, we found that a substantial amount of SIRT1 was expressed beneath

the cellular membranes of skeletal muscle cells, suggesting that SIRT1 might have an additional

role in the plasma membranes. To elucidate the function of SIRT1, we generated skeletal mus-

cle-specific SIRT1 knockout (SIRT1-MKO) mice and found that they were prone to suffer

from exercise-induced muscle injury and had a mild dystrophic phenotype. We show here that

SIRT1 is indispensable in the membrane resealing after injury in C2C12 cells.

Materials and methods

Animal models

All animal experiments were conducted according to The Animal Guideline of Sapporo Medi-

cal University and approved by the Animal Use Committee of Sapporo Medical University.

Animals were housed in the conventional condition under adequate temperature (24 ± 2˚C)

and humidity (50 ± 5%) under a 12 h light /12 h dark cycle with access to food and water ad
libitum.
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Skeletal muscle-specific SIRT1 knockout mice were generated by crossing floxed SIRT1

mice [19] (SIRT1flox/flox, strain name B6;129-Sirt1tm1Ygu/J) with human α-skeletal muscle

actin promoter driven Cre mice (ACTA1-Cre79Jme/J), both obtained from the Jackson Labo-

ratory. Genotypes were confirmed by PCR using primers for Cre (forward: 5’-CGA
ATAACTACCTGTTTTGCCGGGT-3’, reverse: 5’-TCGCCATCTTCCAGCAGGCG
CACCA-3’) and for SIRT1 flox alleles [19].

Histopathology and immunohistochemistry

Mice were deeply anesthetized by intraperitoneal injection of xylazine (10 mg/kg) and pento-

barbital sodium (50 mg/kg), killed by decapitation and then their muscles were isolated by

well-trained persons. Transverse cryosections (10 μm thick) prepared from the quadriceps

muscle were stained with hematoxylin and eosin (HE) or Masson’s trichrome (MT) using

standard procedures. For immunohistochemistry, cryosections were fixed in cold methanol/

acetone (50/50, v/v) for 15 min, treated with Triton X-100 and then blocked with 3% bovine

serum albumin in phosphate buffered saline (PBS). Sections were incubated with antibodies

against SIRT1 (1:1000 dilution; ab110304, Abcam, Cambridge, UK or 07–131, Merck Milli-

pore, Massachusetts, USA), anti-dystrophin (1:1000 dilution; ab15277, Abcam), anti-caveolin

3 (1:1000 dilution; ab30750, Abcam), anti-nNOS (1:500 dilution; A-11, Santa Cruz, Texas,

USA) and anti-CD31 (1:100 dilution; ab56299, Abcam) overnight at 4˚C. Sections were then

probed with secondary antibodies of an anti-mouse IgG antibody conjugated with Alexa Fluor

488 or 594 (1:2000 dilution; Thermo Fisher Science, Waltham, USA), an anti-rabbit IgG anti-

body conjugated with Alexa Fluor 594 (1:2000 dilution; Thermo Fisher Science) or an anti-rat

IgG antibody conjugated with Alexa Fluor 647 (1:2000 dilution; Thermo Fisher Science). Sec-

tions were also stained with Hoechst33342 (Dojindo, Kumamoto, Japan), phalloidin-FITC

(Sigma Aldrich, St Louis, USA) or wheat germ agglutinin conjugated with Alexa Fluor 594

(WGA, Thermo Fisher Science).

Immunoblot analysis

For Western blot analysis, C2C12 cells and muscle tissues were homogenized with Mammalian

Cell Lysis Buffer (Sigma Aldrich) and Cell Lysis Regent for mammalian tissue (Sigma Aldrich),

respectively. For subcellular fractionation, skeletal muscle tissue (quadriceps) was homoge-

nized by a polytron homogenizer in 40 volumes (w/v) of buffer A (50mM Tris-HCl, ph 7.5, 1

mM DTT, 1 mM EDTA) containing protease inhibitor cocktail (Nacalai tesque, Tokyo,

Japan). The homogenates were then centrifuged for 30 min at 100,000 x g to obtain the mem-

brane pellet and cytosol fractions. The pellet fraction was resuspended and homogenized in 40

volumes of buffer A containing 1% NP40 (Sigma Aldrich).

Western blot analysis was performed as described previously [13,14]. The following anti-

bodies were used: anti-SIRT1 (1:1000 dilution; ab110304, Abcam), anti-dystrophin (1:1000

dilution; ab15277, Abcam), anti-caveolin 1 (1:1000 dilution; ab2910, Abcam), anti-caveolin 3

(1:1000 dilution; ab30750, Abcam), anti-nNOS (1:200 dilution; A-11, Santa Cruz), anti-His-

tone H3 (1:2000 dilution; ab1791, Abcam), anti-Histone H3 acetyl K9 (1:10,000 dilution;

ab4441, Abcam), anti-GAPDH (1:2000 dilution; MAB374, Sigma Aldrich) and anti-α-tubulin

(1:2000 dilution; T5168, Sigma Aldrich).

RNA analysis

The total RNA was extracted using an RNeasy Fibrous Tissue Mini Kit (Qiagen, Valencia,

USA) for skeletal muscle tissues and an RNeasy Mini Kit (Qiagen) for other cell lysates.

Reverse transcriptase reactions were performed with the Go Script Reverse Transcription

SIRT1 contributes to membrane resealing
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system (Promega, Madison, USA). For quantitative PCR, cDNA was analyzed by StepOne

Real-Time PCR systems (Applied Biosystems, Foster City, USA) using GoTaq qPCR Master

Mix (Promega). Each sample was run in duplicate, and the mean value was used to calculate

the mRNA levels of the gene of interest. All data were normalized to 18S ribosomal RNA using

the standard curve method. The following primer sequences were used: 5’-GACGCTGTGGC
AGATTGTTA-3’ and 5’-GGAATCCCACAGGAGACAGA-3’ for mouse SIRT1,
5’- CGGACAGGATTGACAGATTG -3’and 5’- CAAATCGCTCCACCAACTAA -3’
for mouse 18S ribosomal RNA, 5’- TGGGAACTACGGGAACAAG-3’ and 5’-
AGTGGCATCCATCAAAGACC-3’ for mouse dysferlin, 5’- CCTCCTTTTCAAGG
TTGCAG-3’ and 5’- TGGATGCTGGGATTATAGCC-3’ for mouse MG53, 5’-
AGTCAATGATGCAGGCTTCC-3’ and 5’- CATGTGTTTGTCCGCATAGC-3’ for
mouse calpain 3, 5’- ATTCTGGGCTCCTGAAAGTG-3’ and 5’-TCGAGCGGTCC
TTAATATCG-3’ for mouse cofilin-2, 5’- AAGGTGTGGATGAAGCAACC-3’
and 5’- AAGGGCTTTCCATTCTCCTG-3’ for mouse annexin A1 (ANNA1),
5’- ACATTGCCTTCGCCTATCAG-3’ and 5’- AAAATCACCGTCTCCAGGTG-3’ for
mouse annexin A2 (ANNA2), 5’- AAGCCTGTTGAAAGGACTGG-3’ and 5’-
TGATCTTGGCGAGACTGTTG-3’ for mouse acid sphingomyelinase (ASM),
5’- ACTTGACAAAGGAGGACCTGAG-3’ and 5’-ATTTTGTCCACAGCCAGAGG-3’
for mouse S100A10, 5’- TTGTACCGTGCATCAAGAGC-3’ and 5’- AAAGAGTG
GATCGCAGAAGG-3’ for mouse caveolin 1, 5’- TCAACGATACCAGCCACAAG-
3’ and 5’- TCTCCTTGCAGTGAATGTCC-3’ for mouse caveolin 3, and
5’-ATCTTGTCGGGCTTTCCAC-3’ and 5’-ATCCAAAGGCTTTCCCAGAT-3’ for
utrophin.

Treadmill test

Exercise capacity of WT and SIRT1-MKO mice at 3 months of age (n = 12 for both) and 30

months of age (n = 6 for both) was measured using a motor-driven treadmill system (MK-680S,

Muromachi Kikai, Tokyo, Japan). The slope of the treadmill was kept constant at 5˚, and the

speed was increased stepwise as follows: 5 min at 10 m/min, 1 min at 11 m/min, 1 min at 12 m/

min, 1 min at 13 m/min, 1 min at 14 m/min, 30 min at 15 m/min, 1 min at 16 m/min, 1 min at

17 m/min, 1 min at 18 m/min, 1 min at 19 m/min and finally 20 m/min until exhaustion.

Exhaustion was defined as spending>50% of the time in a stage or>3 consecutive seconds on

the shock grid. All experiments were performed by investigators blinded to mouse genotypes.

Inverted hanging test

Inverted hanging tests were performed after the treadmill exercise, because mice could hang

for an extremely long time without exercise. The slope of the treadmill was kept constant at 0˚,

and the speed was increased stepwise as follows: 5 min at 10 m/min, 2 min at 12 m/min, 2 min

at 14 m/min, 10 min at 16 m/min, 10 min at 18 m/min and finally 20 m/min until exhaustion.

After the treadmill exercise, a mouse was placed on a net that was then inverted. The hanging

time of the mouse was analyzed with 1 min elapsing between each of five determinations per

mouse and the average of the hanging times was calculated. WT and SIRT1-MKO mice at 5

months of age (n = 6 for both) were analyzed. All experiments were performed by investigators

blinded to mouse genotypes.

Forelimb grip strength test

Fore arm grip strength was assessed by using a grip strength meter (GPM-100B, MELQUEST,

Toyama, Japan). Experiments were performed by the same operator, who was blinded to the
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genotypes of the mice. Grip strength of WT and SIRT1-MKO mice at 5 months of age (n = 5

for both) was analyzed with 1 min elapsing between each of three determinations per mouse.

All experiments were performed by investigators blinded to mouse genotypes.

Myofiber damage evaluation

WT and SIRT1-MKO mice at 5 months of age were injected intraperitoneally with 1% Evans

blue dye (EB, FUJIFILM Wako Pure Chemicals) in PBS 16 h before the treadmill exercise and

were then subjected to treadmill running as described above (Treadmill test) to induce muscle

injury. The quadricepses were sampled from mice 1 h after treadmill running and were rapidly

frozen. WT (n = 4) and SIRT1-MKO (n = 4) mice were analyzed. Frozen muscles were embed-

ded in an optimal cutting temperature compound (Tissue-Tek, Torrance, USA), and were

cross-sectioned at 5 μm by cryostat. To visualize the plasma membranes, sections were stained

with WGA conjugated with Alexa Fluor 488 (Thermo Fisher Scientific) in accordance with the

manufacture’s protocol. WGA-Alexa Fluor 488 (green) and EB (red) were observed by a con-

focal laser microscopy (LSM510META, ZEISS, Oberkochen, Germany). The EB-positive cell

areas divided by total cross-section area were compared between WT and SIRT1-MKO mice.

Percentage of EB positive fibers of SIRT1-MKO mice was also compared with that of WT

mice. ImageJ was used to analyze the area positive for EB.

Assessments of CK and LDH activities

Mice at 5 months of age were subjected to treadmill running as described above (Treadmill

test) to induce muscle injury by exercise. To measure serum activities of CK and lactate dehy-

drogenase (LDH) as markers of muscle injury, blood samples of mice were obtained by snip-

ping their tails 14 days before and 1 h after treadmill exercise. Serum CK and LDH activities

were assessed with CYGNUS AUTO CK (Shino-Test Corporation, Tokyo, Japan) and Quick-

auto-neo LD (Shino-Test Corporation), respectively, in LABSPECT 008 HITACHI Automatic

Analyzer (Hitachi, Tokyo, Japan). WT (n = 11) and SIRT1-MKO mice (n = 8) were analyzed.

Cell culture

C2C12 cells were cultured in Dulbecco’s modified Eagle’s medium with high glucose (Nacalai

Tesque, Kyoto, Japan) containing 10% fetal bovine serum (MP Biomedicals, Aurora, USA) in

an incubator with 5% CO2 set at 37˚C. Twenty-four h after passage, cells were treated with

Vehicle, 10 mM nicotinamide (NAM; FUJIFILM Wako Pure Chemicals) or Ex527 (Tocris Bio-

science, Ellisville, USA) and incubated for 12 h. RNAi-mediated knockdown was performed

by transfection of Sirt1-siRNA (Sigma-Aldrich, Mm_Sirt1_5675) or Control-siRNA (Sigma-

Aldrich, Mission_SIC-001) (30 nM for both) targeting SIRT1 using Lipofectamine RNAiMAX

Transfection Reagent (Thermo Fisher Scientific) according to the manufacturer’s instruction.

Experiments were completed at 48 h after transfection. For the differentiation, C2C12 cells

were cultured in Dulbecco’s modified Eagle’s medium with low glucose (FUJIFILM Wako

Pure Chemicals) containing 2% house serum (Thermo Fisher Scientific) for 1 week.

Membrane repair assay

Just before the assay, the medium was changed to Live Cell Imaging Solution (Thermo Fisher

Scientific) containing 10 μM FM1-43 dye (Thermo Fisher Scientific) at 37˚C. Cell membrane

damage was induced with a Nikon A1 laser scanning confocal microscope equipped with plan

Apo 100x oil immersion objective lens (NA 1.4). For laser injury, a 1 μm x 1 μm area was irra-

diated by a 405 nm laser at 100% power by using the photo-activation mode. Each irradiation
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time was 395.92 msec and irradiation was repeated 5 times (total 20 sec). Images were captured

by a 488 nm laser. Images were acquired for 20 sec every 5 sec before injury, just after every

injury or after all injuries, and for 4 min every 5 sec following the injury. For each image, fluo-

rescence intensity of a cell was measured by Nikon NIS Elements v4.1 software. To analyze

fluorescence intensity of a differentiated myotube, the portion of the myotube irradiated with

a laser in a microscopic field was analyzed. Data is presented as change of fluorescence inten-

sity relative to the value at 0 sec (ΔF/F0). Data from at least six myoblast cells or four myotubes

were compared in one experiment, and confirmed with three independent experiments.

Statistical analyses

Data are expressed as means ± SEM. Statistical significance was determined using an unpaired

Student’s two-tailed t-test for two data sets. Two-way repeated measures ANOVA and the Stu-

dent-Newman-Keuls post hoc test were used to analyze differences in data between WT and

SIRT1-MKO mice before and after the treadmill exercise. For all tests, p<0.05 was considered

statistically significant. When comparing data from the two groups, the sample size required

for statistical power to be 0.8 was estimated in the settings with an alpha value at 0.05 and stan-

dard deviation of data from the control group in each experiment. All analyses were performed

with SigmaStat (Systat, San Jose, USA).

Results

Skeletal muscle-specific SIRT1 knockout (SIRT1-MKO) mice showed a

mild dystrophic phenotype

To identify the intracellular distribution of SIRT1 in the muscle, we stained sections of mouse

quadriceps with a SIRT1 antibody (Fig 1a). Costaining of SIRT1 with membrane (dystrophin

and caveolin 3) or cytoplasmic (actin staining by phalloidin) markers, and nuclei (Hoechst

33342) showed that high levels of SIRT1 expression were detected in the nuclei, cytosol and

also beneath cellular membranes (Fig 1a). Immunostaining using another antibody against

SIRT1 also showed that SIRT1 was found beneath plasma membranes (Part D in S1 Fig). To

confirm the localization of SIRT1, Western blot analysis of subcellular fractions of

quadricepses was performed. As shown in Fig 1b, both of the cytoplasmic and membrane frac-

tions contained SIRT1, although the intensity of SIRT1 band in the membrane fraction was

less than that in the cytoplasmic fraction.

To identify the function of SIRT1 beneath sarcolemma, we generated skeletal muscle-spe-

cific exon 4-deleted SIRT1 knockout mice by crossing SIRT1 flox mutant mice (SIRT1flox/flox)

with transgenic mice carrying a Cre transgene under the control of a human α-skeletal muscle

actin promoter. In the quadricepses of SIRT1-MKO mice, expression levels of SIRT1 mRNA

containing exon 4 were reduced to 30% of those of WT mice (Fig 1c). In SIRT1-MKO mice,

mutant SIRT1 of about 100 kDa, which lacked amino acid sequence coded by exon 4 of the

Sirt1 gene, was expressed (Fig 1d). Localization of the mutant SIRT1 in quadricepses from

SIRT1-MKO mice was quite similar to that of wild type SIRT1 in immunostaining (Part A in

S1 Fig), indicating that the deleted amino acid sequence of SIRT1 did not affect subcellular

localization of SIRT1. HE staining of quadricepses showed that SIRT1-MKO mice had myofi-

bers with central nuclei (Fig 1e: arrows). Nearly 20% of myofibers in the quadriceps of

SIRT1-MKO mice had central nuclei, whereas only 0.5% of myofibers in WT mice had central

nuclei (Fig 1f). Fiber frequencies of small fibers less than 500 μm2 increased in quadricepses of

SIRT1-MKO mice compared with those of WT mice and the number of middle-sized fibers

(2001–3000 μm2) in SIRT1-MKO mice decreased compared with those in WT mice (Fig 1g).
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Fig 1. SIRT1-MKO mice have mild dystrophic pathology. (a) Immunofluorescence staining for SIRT1 (ab110304,

Abcam), dystrophin, caveolin 3 and nNOS in muscle sections from WT mice at 6 months of age. Cytoplasm of skeletal

muscles was stained with phalloidin. (b) Immunoblots of cytoplasmic fraction and membrane fraction of quadricepses

from WT mice. (c) Levels of Sirt1 mRNA containing exon 3 and exon 4 in quadriceps of WT and SIRT1-MKO mice at 12

months of age were analyzed by qPCR using primers amplifying the region (n = 3). (d) Immunoblots of quadriceps from

WT and SIRT1-MKO. The band of WT SIRT1 is detected around 110 kDa, whereas the band of mutant SIRT1, which

defects amino acid sequence derived from Sirt1 gene exon 4, is found at 100 kDa. Immunoblot for α-tubulin was used as

a loading control. (e) Hematoxylin and eosin (HE) staining of quadriceps from WT (top) and SIRT1-MKO (bottom)

mice at 12 months of age. The arrows indicate centrally nucleated myofibers. (f) Frequency of centrally nucleated
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Accordingly, fiber splitting and fiber regeneration were frequently detected in the muscles of

SIRT1-MKO mice (Parts B and C in S1 Fig). MT staining of quadricepses showed no differ-

ence in fibrosis between WT and SIRT1-MKO mice (Fig 1h and 1i). In addition, necrotic

fibers were rarely observed in the muscles of SIRT1-MKO mice. Because SIRT1 has been

reported to control blood vessels growth [20], we assessed the number of capillaries. However,

the number of CD31-positive capillaries in the section of quadricepses was similar between

WT and SIRT1-MKO mice (Fig 1j and 1k).

Muscle fragility with reduced exercise endurance and strength in

SIRT1-MKO mice

Previously, exercise activities were reported to decrease significantly in skeletal muscle-specific

SIRT1 deficient mice [12]. In the present study, exercise performance of male 3 and 30 months

old male WT and SIRT1-MKO mice was examined. The treadmill running showed that

SIRT1-MKO mice could run for a much shorter distance than WT mice (Fig 2a and 2b). Dura-

tion of hanging after the treadmill exercise in 14-month-old SIRT1-MKO mice was signifi-

cantly shorter than that of WT mice of the same age (Fig 2c). Grasping power was weaker in

SIRT1-MKO mice than WT mice and levels of grasping power of SIRT1-MKO mice were

approximately 80% of those of WT mice at the age of 5 months (Fig 2d). Because body weights

(BW) were comparable in WT and SIRT1-MKO mice (Parts A-D in S2 Fig), these data sug-

gested that SIRT1 was indispensable for maintaining exercise endurance and muscle strength.

To examine whether SIRT1-MKO mice were prone to muscle injury when compared with

WT mice, SIRT1-MKO mice and WT mice were injected intraperitoneally with EB before a 16

h of treadmill test and examined 1 h after the exercise (Fig 2e). EB enters into and is retained

in a cell only when the cell membranes have a rupture. In our study, EB fluorescence levels and

the percentage of EB-positive fibers in quadricepses of SIRT1-MKO mice were much higher

than those of WT mice, indicating that quadricepses of SIRT1-MKO mice had much more

exercise-induced muscle damage compared than those of WT mice (Fig 2f–2h). We found that

levels of serum CK and LDH activities in SIRT1-MKO mice were higher than those of WT

mice before exercise and much more CK and LDH were liberated from muscles of

SIRT1-MKO mice after the treadmill exercise (Fig 2i–2l). Liberating amounts of CK through

exercise were much higher in SIRT1-MKO mice compared with those of WT mice, indicating

that muscles of SIRT1-MKO mice were prone to being damaged by exercise (Fig 2j).

SIRT1 is necessary for membrane repair in C2C12 cells

Muscular fragility of SIRT1-MKO mice suggested that SIRT1 might have a protective role in

muscle cells beneath sarcolemma (Fig 1a). Muscular membrane fragility is caused by genetic

mutations of the dystroglycan complex and also of membrane resealing machinery such as

dysferlin [21, 22]. There have been no previous reports focusing on how SIRT1 interacts with

the dystroglycan complex or membrane repair proteins. Because phenotypes of SIRT1-MKO

myofibers in quadriceps from WT and SIRT1-MKO mice (n = 3 for both). (g) Cross-sectional area of myofibers in the

quadriceps muscles of WT and SIRT1-MKO mice (n = 3 for both). (h) Masson’s trichrome (MT) staining of quadriceps

from WT (top) and SIRT1-MKO (bottom) mice at 12 months of age. (i) The ratio of fibrotic areas of WT and

SIRT1-MKO mice (n = 3 for both). (j) ImmunofIuorescence staining for CD31 (green), visualizing blood vessels,

performed using quadriceps from WT (top) and SIRT1-MKO (bottom) mice at 12 months of age. WGA lectin staining

(red) was used for visualization of the connective tissues in skeletal muscles. (k) The number of capillary blood vessels

stained with an anti-CD31 antibody was equivalent between WT and SIRT1-MKO mice. Scale bars of images are 50 μm

(a, e, h right and j) and 200 μm (h left), respectively. Data are represented as means ± SEM. Significant difference was

determined by a two-tailed Student’s t-test: �p<0.05, ��p<0.001. n.s., not significant.

https://doi.org/10.1371/journal.pone.0218329.g001
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mice were similar to those of dysferlinopathy (see Discussion), we examined whether mem-

brane resealing in C2C12 myoblast cells was affected by SIRT1 inhibition. Membrane resealing

can be monitored by an influx of fluorescent dye FM1-43 in cells after laser irradiation. NAM

is an inhibitor of SIRT1 and 5 mM or more doses of NAM inhibited deacetylation of histone

H3 (H3K9) in C2C12 cells (Fig 3a). When cells were treated with 10 mM NAM, FM1-43

uptake by cells was significantly promoted (Fig 3b lower panels, S2 Video) compared with

those of control cells (Fig 3b upper panels, S1 Video), indicating that NAM inhibited mem-

brane resealing. The time course of dye uptake of the cells treated with NAM or control PBS

after laser injury is shown in Fig 3c. After laser irradiation, vesicles under the injured mem-

branes aggregated, fused with each other and formed a large convex of membranes patching

the injured site in control cells (Fig 3d and 3e, S3 Video). However, in the presence of NAM,

vesicles were aggregated under the injured membranes, but their fusion and/or attachment to

Fig 2. SIRT1-MKO mice have muscle fragility with reduced exercise endurance and strength. (a, b) Treadmill activity of WT and

SIRT1-MKO mice at 3 months of age (a: n = 12) and 30 months of age (b: n = 6). (c) Hanging time after treadmill exercise of WT and

SIRT1-MKO mice at 12 months of age (n = 6). (d) Grasping power of WT and SIRT1-MKO mice at 5 months of age (n = 5). (e) A

schema of Evans blue dye (EB) uptake experiments. (f) Representative images of EB (red) uptake into quadriceps myofibers of WT (left)

and SIRT1-MKO (right) mice 1 h after treadmills exercise. Scale bar is 500 μm. (g) The EB-positive area of WT and SIRT1-MKO mice

(n = 4). (h) The percentage of EB-positive fibers of WT and SIRT1-MKO mice (n = 4). (i) Serum creatine kinase activities (CK) of WT

and SIRT1-MKO mice before (Pre) and after (Post) treadmill experiments. (k) Serum lactate dehydrogenase activity (LDH) of WT and

SIRT1-MKO mice before (Pre) and after (Post) treadmill experiments. (j and l) The differences in CK (j: ΔCK) and LDH (l: ΔLDH)

activities before and after treadmill experiments (n = 11 and 8 in WT and SIRT1-MKO mice, respectively). Data are represented as

means ± SEM and significant differences in (a)-(d), (g), (h), (j) and (l) were determined by a two-tailed Student’s t-test. �p<0.05. Two-

way repeated measures ANOVA and Student-Newman-Keuls post hoc tests were performed to determine significant differences in (i)

and (k).

https://doi.org/10.1371/journal.pone.0218329.g002
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Fig 3. SIRT1 inhibition and SIRT1 knockdown inhibit membrane resealing in C2C12 cells. (a) Immunoblots of

acetylated (top) and total (bottom) histone H3 in C2C12 cells 12 h after treatment with various concentrations of

nicotinamide (NAM). (b) Plasma membrane repair kinetics upon laser injury measured by membrane impermeable

FM1-43 dye influx (green). Representative images before and after laser injury of control (top) and NAM (bottom)

treated C2C12 cells. X-marks (red) indicate laser injury points and dotted lines (white) indicate cellular shapes. (c)

Time course of FM1-43 dye influx after laser injury in C2C12 cells treated with PBS or NAM (n = 6). Arrow indicates

the time point of membrane injury. (d) Enlarged images of the cells 5 min after laser injury. The dotted curves indicate

convex (Control) and concave (NAM) membrane 5 min after laser irradiation, respectively. (e) Representative high-
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the injured membranes were inhibited, resulting in the formation of concave membranes

around the injured site (Fig 3d and 3e, S4 Video). Similar results were obtained when C2C12

cells were treated with 10 μM Ex527, a SIRT1 specific inhibitor (S5 and S6 Videos). Membrane

protrusion after laser irradiation was observed in control cells after 4 min of laser exposure,

whereas membrane repulsion was found in cells treated with NAM (Fig 3f).

Sirt1-siRNA was used to confirm the effects of SIRT1 on membrane repair (Fig 3g and 3h).

Knockdown of SIRT1 by Sirt1-siRNA in C2C12 cells showed persisting intracellular entry of

FM1-43 dye after laser injury (Fig 3i and 3j, S7 and S8 Videos). After laser irradiation, mem-

brane repulsion was found in cells treated with Sirt1-siRNA, whereas membrane protrusion

was detected in Control-siRNA treated cells (Fig 3k and 3l, S9 and S10 Videos). Treatment of

cells with Sirt1-siRNA induced membrane repulsion, which was similar to those of cells treated

with NAM (Fig 3m). Because SIRT1 regulates expressions of various genes, NAM and Sirt1--
siRNA may affect gene expression levels of membrane repair proteins. NAM slightly affected

mRNA levels of ANNA1 and ASM (Fig 3n), but Sirt1-siRNA had only a faint effect on the

expression levels of ten membrane repair proteins and utrophin (Fig 3o). These results indi-

cated that SIRT1 regulated the membrane repair process without transcriptional change of

membrane-repair related genes. Whether SIRT1 is involved in membrane resealing in myo-

tubes or not, we differentiated C2C12 cells to myotubes and examined their membrane injury

and repair (Fig 3p). Caveolin 3 and nNOS, markers of myotubes, were expressed in the differ-

entiated myotubes as shown in Fig 3q. SIRT1 expression levels of myotubes were comparable

with those of C2C12 myoblast cells (Fig 3q). Similar to myoblast cells, membrane resealing

after laser irradiation was constantly observed in differentiated myotubes (Fig 3r and 3s).

When myotubes were treated with NAM, FM1-43 dye persistently entered intracellular species

after laser irradiation (Fig 3r and 3s, S11 and S12 Videos).

Discussion

In the present study, we showed that SIRT1-MKO mice had pathological and physiological

characteristics similar to those of mild dystrophies, especially dysferlinopathy (Figs 1 and 2).

High serum CK and LDH levels by exercise, indicated membrane fragility of muscles in

SIRT1-MKO mice. EB uptake in the muscle after exercise in fact was significantly higher than

that of WT mice (Fig 2e–2h). Although SIRT1-MKO mice had a high number of regenerating

myofibers and lower number of middle-sized myofibers with high serum CK levels compared

with those of WT mice, necrotic fibers, fibrosis and inflammatory changes were barely

detected in their muscles (Fig 1e–1i). These phenotypes are common with clinical features of

dysferlinopathy including limb girdle dystrophy type 2B and Miyoshi myopathy, which show

power field images of C2C12 cells before and after laser injury. (f) Movement of the membrane at the injured site after

irradiation. Membrane positions 4 min after laser injury in C2C12 cells treated with PBS or NAM (n = 8). (g, h)

Knockdown of Sirt1 mRNA levels (g, n = 3) and decrease of SIRT1 protein levels (h) by Sirt1-siRNA (Sirt1-si). (i)

Representative images before and after laser injury of C2C12 cells treated with Cont-si and Sirt1-si. (j) Time course of

FM1-43 dye influx over time after laser injury in C2C12 cells treated with Cont-si or Sirt1-si (n = 8). Arrow indicates

the time point of membrane injury. (k) Enlarged images of the cells 5 mins after laser injury. The dotted curves

indicate convex (Cont-si) and concave (Sirt1-si) membrane 5 min after laser irradiation. (l) Representative high-power

field images of C2C12 cells treated with Cont-si and Sirt1-si. (m) Membrane positions 4 min after laser injury in C2C12

cells treated with Cont-si and Sirt1-si. (n = 8). (n, o) mRNA levels of membrane repair proteins in C2C12 cells treated

with NAM (n) or Sirt1-si (o) were compared with those of control cells (n = 3). (p) Morphology of C2C12 myoblasts

and myotubes. (q) Immunoblots of C2C12 myoblast cells and differentiated myotubes. (r) Representative images

before and after laser injury of control (top) and NAM-treated myotubes (bottom). (s) Time course of FM1-43 dye

influx after laser injury in control and NAM-treated myotubes (n = 4). Scale bars are 20 μm (b and i), 5 μm (d, e, k and

l) and 100 μm (r), respectively. Data are represented with means ± SEM. Significant differences were determined by a

two-tailed Student’s t-test. �p<0.05, ��p<0.001.

https://doi.org/10.1371/journal.pone.0218329.g003
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minimal dystrophic change and decreased exercise performance with very high serum CK lev-

els in their early stages [22, 23]. Interestingly, exercise in the early stage of dysferlinopathy

accelerated the progression of disease [23]. Dysferlin is indispensable for membrane repair

mechanism in which vesicles containing dysferlin aggregate and fuse beneath injured mem-

branes [24]. We found that SIRT1 inhibition or knockdown disturbed membrane repair and

inhibited vesicle aggregation and fusion at the injured site (Fig 3). To our knowledge, this is

the first report to demonstrate the role of SIRT1 in membrane repair.

In the Western blot analysis, the intensity of SIRT1 band in the membrane fraction was less

than that of cytosolic fraction (Fig 1b). This may be derived from that total amount of cyto-

plasmic SIRT1 is dominant in skeletal muscles and/or membrane SIRT1 is easily detached

from plasma membranes under cellular fractionation experiments. nNOS, a member of dys-

troglycan complex, mainly localized beneath cellular membranes (Fig 1a). However, as shown

in Fig 1b, nNOS was dominantly detected in the cytoplasmic fraction in the Western blot as

reported by Chang et al. [25].

Ca2+ influx via damaged membranes stimulates aggregation of exocytic vesicles beneath

injured membranes [1] and induces vesicles to form a membrane patch on the injured site by

cross-linking them [26]. Treatment of cells with SIRT1 inhibitors or Sirt1-siRNA seemed to

disturb intracellular vesicle fusion and/or attachment of vesicles to the injured membranes

(Fig 3). A large patch formation on the wound site was also inhibited by NAM and Sirt1-siRNA
(Fig 3d and 3k). Exocytosis is a mechanism to transport neurotransmitters and proteins out of

the cells and participates in the provision of new membranes at the leading edge of migrating

cells. Previously, we showed that SIRT1 is expressed in lamellipodium, a membrane protrusion

of migrating cells, and is necessary for lamellipodium formation and migration of melanoma

cells [27]. Contribution of SIRT1 on lamellipodium formation suggests that SIRT1 may be

involved in cell membrane endocytosis and/or exocytosis [27]. Accordingly, SIRT1 has been

demonstrated to positively regulate exocytosis-mediated hormone secretion [28]. In pituitary

cells, SIRT1 positively regulates the exocytic release of thyroid-stimulating hormone via deace-

tylating and activating phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ) [29], which is

involved in exocytosis of synaptic vesicles [30]. At present, it is not known whether PIP5Kγ is

involved in membrane repair of C2C12 cells or not. Caveolin 1 and 3 are plasma membrane

proteins which regulate endocytosis of dysferlin [31], and caveolin 3 interacts with MG53 and

dysferlin to promote membrane repair [5]. Importantly, the scaffolding domain of caveolin 1,

which is conserved between caveolin 1 and caveolin 3, directly binds SIRT1 [32]. Thus, caveo-

lins may recruit SIRT1 beneath plasma membranes, where SIRT1 may deacetylate target pro-

tein(s) to reseal damaged membranes.

We have reported that a SIRT1 activator resveratrol decreases cardiac pathophysiology with

extension of lifespan in δ-sarcoglycan-deficient TO-2 hamsters [18] and ameliorates muscular

and cardiac pathophysiologies of dystrophin-deficient mdx mice [13–17]. SIRT1 overexpres-

sion in mdx mice ameliorates dystrophic phenotypes with decreased serum CK levels and mus-

cle EB uptake [12]. At present, it is not known whether resveratrol or SIRT1 overexpression

promotes membrane resealing or not.

SIRT1-MKO mice showed shorter hanging times and lower grasping power (Fig 2), indicat-

ing that SIRT1 plays some role in muscle strength as well. Reduction of muscle contraction

activities has been reported in mice lacking MG53 [7] or ANNA1 [33], membrane repair pro-

teins, although dysferlin-deficient mice showed normal contraction activities [34]. SIRT1 pro-

motes mitochondrial biogenesis [8]. Accordingly, reduced mitochondrial function and

decreased expression levels of mitochondrial proteins have been reported in muscles from

whole-body SIRT1 knockout mice [11] and skeletal muscle-specific SIRT1 knockout mice
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[12], respectively. Thus, impaired mitochondrial function may affect muscle strength in

SIRT1-MKO mice.

Our study indicates that SIRT1 plays role in membrane repair of skeletal muscle. Further

studies of SIRT1 activation will reveal its effect on muscular dystrophies.

Supporting information

S1 Fig. HE staining of quadriceps from 12 months old SIRT1-MKO mice. (a) Immunofluo-

rescence staining for SIRT1, dystrophin, caveolin 3 and nNOS in muscle sections from

SIRT1-MKO mice at 6 months of age. (b) Arrowheads indicate fiber splitting. (c) Basophilic

staining shows a regenerating fiber in a section of HE staining (arrow). (d) Immunofluores-

cence staining for SIRT1 (07–131, Merck Millipore) in muscle sections from WT and

SIRT1-MKO mice at 6 months of age.

(TIFF)

S2 Fig. Body weights of WT and SIRT1-MKO mice. Body weights of WT and SIRT1-MKO

mice at 3 (a), 5 (b), 14 (c), and (d) 30 months old. n. s. not significant.

(TIFF)

S1 Video. Movie of C2C12 cells treated with PBS.

(AVI)

S2 Video. Movie of C2C12 cells treated with 10 mM NAM.

(AVI)

S3 Video. Movie of C2C12 cells treated with PBS (High power field).

(AVI)

S4 Video. Movie of C2C12 cells treated with 10 mM NAM (High power field).

(AVI)

S5 Video. Movie of C2C12 cells treated with DMSO.

(AVI)

S6 Video. Movie of C2C12 cells treated with 10 μM Ex527.

(AVI)

S7 Video. Movie of C2C12 cells treated with Control-siRNA.

(AVI)

S8 Video. Movie of C2C12 cells treated with Sirt1-siRNA.

(AVI)

S9 Video. Movie of C2C12 cells treated with Control-siRNA (High power field).

(AVI)

S10 Video. Movie of C2C12 cells treated with Sirt1-siRNA (High power field).

(AVI)

S11 Video. Movie of C2C12 myotubes treated with PBS.

(AVI)

S12 Video. Movie of C2C12 myotubes treated with 10 mM NAM.

(AVI)
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