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ABSTRACT 

In this review the research we have per- 
formed, will be mainly described through my 
studies.  In particular, the study of hepatic pro- 
genitor cells, "small hepatocytes(SHs)," which 
were first found by me, is detailed.  Until now, 
our laboratory has focused its research on the 

issue of the "liver", i.e., development, regenera- 
tion, stem/progenitor cells, and carcinogenesis. 
I will summarize our research by8 themes.  In 
each theme I only quote the references that we 
have reported. 
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The  present  laboratory  (Department  of 
Pathophysiology) originates from the  Depart- 
ment  of Pathology,  the  title  of which  was 
changed on April IS',2002.   The Cancer Re- 
search Institute was established in1955 and the 
Department of Pathology was one of 21aborato- 
ries with which the Institute began.  The first 
professor was Dr. Hideyuki Tsukada, M.D., Ph. 
D. (1963-1988) and the second was Dr. Yoichi 
Mochizuki, M.D., Ph.D. (1988-2002).    Then, I, 
Toshihiro Mitaka, M.D., Ph.D. succeeded to this 
laboratory. In this review the research we have 
performed, will be mainly described through my 
studies.

Since I returned from the University of
Wisconsin, U.S.A and began to work as an in-
structor in 1990, I started to investigate the 
regulation of growth and maturation of rat he-
patocytes.   In particular, the study of hepatic 
progenitor cells, "small hepatocytes(SHs)," which 
were first found by me, has been carried out.
Until now,our laboratory has focused its re- 
search on the issue of the "liver", i.e., develop- 
ment, regeneration, stem/progenitor cells, and 
carcinogenesis.  I will summarize our research 
by each theme. As the research concerning the 
regulation of growth and maturation of rat he- 
patocytes(mainly in the 1990s) is described in 
my previous review article'), I recommend it to 
researchers who are interested in the culture of 
primary hepatocytes. 

1. Small hepatocytes and hepatic organoid for- 
mation

SHs have been identified as proliferating 
cells  with  hepatic  characteristics.    We  first 

found a remarkable increase of small mononu- 
cleate cells within primary hepatocytes cultured 
in medium supplemented with 10 ruM nicotina- 
mide and epidermal growth factor(EGF)21.  One 
SH could proliferate to form a colony.   Most 
cells grow slowly and 5 to 6 divisions occur 
within 10 days3).  The population of SHs in the 
young adult rat liver is estimated to bet5-2.0% 
of hepatocytes, and the number of the cells de- 
creases with age4).  Although SHs can continue 
growing without losing hepatic characteristics 
for several months, the immortalization of the 
cells is so difficult that cell lines have not yet 
been established.  In early culture SHs require 
both nicotinamide and fetal bovine serum for 
the enlargement of the colonies, and growth fac- 
tors such as EGF, hepatocyte growth factor 
(HGF), transforming growth factor(TGF)一α, and 
fibroblast growth factor(FGF)1/2 can stimulate 
their expansion5).  To isolate SHs, we only use a 
simple technique of low-speed centrifugation by 
changing the gravity(50 and 150 x g) and dura- 
tion (1 and 5 min)3,5).  Therefore, the purity of 
SHs is not so high at plating. However, the fact 
that the isolated cells contain nonparenchyma1 
cells(NPCs)led to an important finding for us. 
The cells attached on the dish are a mixture of 
epithelial cells and NPCs such as stellate (Ito) 
cells,liver epithelial cells(LECs), Kupffer cells, 
and sinusoidal endothelial cells(SECs) as well as 
SHs.  Some mature hepatocytes(MHs) are also 
included in the culture.   Only 3 to4% of the 
plated cells have capability as progenitor cells 
that can form SH colonies5).

While  most  SECs  disappear  within  one 
week and the proliferation of MHs is limited, 

Figure l. Phase-contrast photographs of small hepatocytes.   (A) At day 13 after plating.   Small-sized hepa-
tocytes are proliferating and becoming flat and compact.   (B) Large-sized hepatocytes are rising 
on a colony at day 42.   (C) A hepatic plate-like structure is formed from a colony.   Bile canali-
culi(white lucent lines) are observed between cells. 
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LECs and stellate cells, as well as SHs, actively 
proliferate in the culture.  The proliferating SH 
colony initially consists of small mononucleate 
cells that compactly gather(Fig.1A). At around 
2 weeks after plating, the shape of some SHs in 
a colony alters.    Cells with large cytoplasm, 
which are sometimes binucleate, appear and 
they occupy a large area of the colony with 
time in culture. Thereafter, the large-sized SHs 
three-dimensionally rise and pile up on the col- 
ony (Fig. IB). The morphological changes of 
cells always begin in a region of the colony sur- 
rounded by both stellate cells and LECs.  Other 
SHs that are not surrounded by NPCs maintain 
their cell shape and a monolayer.  The rising/ 
piling-up cells grow slowly and gradually cover 
most parts of the colony.  With time in culture 
rising/piling-up cells on the colony rearrange 
and form trabecular structures that are 2-3 
cells thick and similar to immature liver plates 
(Fig.1C).  W e named the structures"hepatic or- 
ganoids"   Immunocytochemical and ultrastruc- 
tural analyses of the structures reveal that the 
colony with rising/piling-up cells consists of 
multilayered cells with large cytoplasm that are 
rich in mitochondria, rough endoplasmic reticu- 
lum, peroxisomes, and glycogen granules, and 
show the typical morphology of MHs5).  In addi- 
tion,  both  desmin-positive  stellate  cells  and 
vimentin-positive LECs invade under the colony 
and, in the space between the multilayered cells 
and NPCs, an extracellular matrix (ECM) accu- 
mulates to form a basement membrane (BM)- 
like structure, which may be reconstituted with 
ECM produced by NPCs.  The BM-like struc- 
ture is comprised of laminin, type IV collagen, 
and fibronectin, but type I collagen is sparse. 
Accumulation of ECM may result in morpho- 
logical changes and the maturation of SHs. The 
fact that BM formation is important for the in- 
duction of maturation of SHs is proved by the 
following  experiment.    When  EHS  gel  (Ma- 
trige1®), the components of which are quite simi- 
lar to those of BM, is overlaid on SH colonies, 
rapid morphological changes occur in the colo- 
nies: ?attened compact cells become rising/pit- 
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ing-up cells within a week and then rising/pil- 
ing-up cells slowly proliferate to form liver- 
plate-like structures6).  However, morphological 
alteration of the colonies is not induced by 
either the application of individual components 
such aslaminin, type IV collagen, and collagen 
gel,or by the addition of various growth factors 
such as FGF, platelet-derived growth factor, 
nerve growth factor,or TGF一β.   In addition, 
when primary cells including SHs are plated on 
Matrige1⑧, the SHs cannot proliferate to form a 
colony.  As Matrige1⑧is well known to inhibit 
DNA synthesis of primary hepatocytes and in_ 
duce spheroid formation of them, the formation 
of a liver-plate-like structure by Matrige1®has 
never been observed in other cells, including he- 
patic stem cells and hepatocytes.    This phe- 
nomenon is a quite unique property of SHs. Re- 
cently, we succeeded in purifying SHs by using 
hyaluronic acid (HA) and culture for a long 
time7). In the culture the attachment and prolif- 
eration of NPCs are inhibited so that no rising/ 
piling-up cells appear.   These results suggest 
that BM formation is important for the morpho- 
logical changes of SHs and that proliferation of 
SHs and the following accumulation and assem_ 
bly of ECM produced by NPCs are necessary 
for hepatic organoid formation.  The existence 
of SHs is speculated in the human liver and the 
isolation of human SHs (hSHs) has been at- 
tempted.   We recently succeeded in culturing 
hSHs in serum-free medium8).  For the purpose 
of clonal expansion of hSHs without serum, HA 
and HGF, as well as EGF, are necessary.  hSHs 
could proliferate for more than 3 weeks and the 
average number of SHs in a colony was about 
100 cells at day 21. They expressed not only 
genes related to hepatic differentiated functions 
but alsoα一fetoprotein, CD44, D6.IA, and BRI3. 
In addition, hSHs can also reconstruct hepatic 
organoids on a dish cooperating with hepatic 
NPCs(our unpublished data).

The process of SH maturation and the for- 
mation of hepatic organoids are illustrated in 
Figure2. (A) A single SH proliferates to form a 
colony, while NPCs such as stellate cells and 
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LECs grow separately.  (B) The colony of SHs 
and NPCs accidentally attach to each other and 
then NPCs invade under the colony. ECM accu- 
mulates under the colony. ECM may induce the 
alteration of SHs from small and flat to large 
and thick.  With the change of cell morphology, 
they obtain some hepatic differentiated func- 
tions.  (C) Although the detailed mechanism is 
not known, each ECM component may be as- 
sembled to make BM.  BM formation is neces- 
sary to induce the enlargement of the cells.  On 
the other hand, at this time the colony is sur- 
rounded by NPCs  and  its  expansion  is  re- 
stricted.  Therefore, the increased volume may 
make the cells go upward and the phenomenon 
of "rising" is observed in the colony.  With the 
increase of the volume, the maturation of the 
cells progresses and the polarity of cell mem- 
branes may be established, and the apical do- 
main of the membrane forms bile canaliculi(BC) 
with adjacent cells. (D) Although BM formation 
may repress cell division, the rising cells slowly 
proliferate to expand in the colony and the"pil- 
ing-up" cells cover the colony to reconstruct he- 
patic organoids. The structure consists of 2 to3 
layers of cells, and between the cells BC elon- 
gate to form long tubules.  Anastomoses of BC 
to each other and their networks are recon- 
structed in the colony.   BC can synchronize 
their contractions to make bile flow in a certain 
direction.  In addition, as some SHs remain in 
most colonies, the colonies continue to expand. 
The horizontally expanded rising/piling-up cells 
may be rearranged to form plate-like structures 
that are similar to fnvlvo liver plates and are2 
-3 cells thick. 

2. Hepatic differentiated functions of SHs
As described above, the morphological al- 

teration of cells is correlated with the matura- 
tion of SHs. It is well known that cell shape is a 
key factor to regulate the growth, differentia-
tion, and survival of hepatocytes. In the culture 
of hepatic cells their degree of differentiation 
may be judged by acquisition of functions of 
MHs.   Liver-specific functions of the cells are 

generally   evaluated   by   the   expression   of 
mRNAs and/or proteins such as serum proteins, 
metabolizing enzymes of nutrients, drug me- 
tabolizing  enzymes,  and  various  membrane 
transporters.  The genes related to those liver- 
specific functions are mainly regulated by liver- 
enriched transcription factors(LETFs) such as 
CCAAT/enhancer binding proteins(C/EBP) α
and β, as well as hepatocyte nuclear factor 
(HNF)1α, HNF3, HNF4α, and HNF6.   When 
SHs remain small, HNF4 is expressed in all SHs 
but neither C/EBPαnor HNF6 is expressed6).
In the cells, expression of tryptophan 2,3'-di- 
oxygenase(TO) and serine dehydratase(SDH), 
which are expressed in highly differentiated he- 
patocytes, is quite low and not induced, respec- 
tively. However, when SHs change from small 
and flat to large and rising/piling-up, C/EBPα, 
HNF6, and HNF4αare expressed and both TO 
and SDH can be induced by appropriate hor- 
mones.    Furthermore, when SH colonies are 
treated with Matrige1®, the expression of HNF4 
α, C/EBPα, C/EBPl3, and HNF6 is also induced6). 
In addition, the expression of carbamoylphos- 
phate synthetase I and glutamine synthetase, 
key enzymes of ammonium metabolism, is dra- 
matically induced9).    These results were also 
confirmed by microarray analysis'°). GeneChip®
analysis of cells reveals that, compared to hepa- 
toblasts (HBs) and SHs, the cells treated with 
Matrige1⑧show high expression of many LETFs 
and nuclear receptors as well as genes related 
to hepatic differentiated functions, though the 
expression is less than that of MHs. It is known 
that cytochrome P450s(CYPs) are expressed in 
highly differentiated hepatocytes and that it is 
hard for cultured hepatocytes to maintain the 
expression even for a few days.  Recent studies 
on gene promoter and enhancer sequences have 
revealed that the expression of CYPs is also 
regulated by several different LETFs, including 
HNF1α, HNF1β, HNF3, HNF4, C/EBPα, and C/ 
EBPβ. In SHs, although as much CYP2E1 is ex- 
pressed as in MHs,low expression of CYPIA1/ 
2,2B1,3A2, and 4A1 is observed'').   However, 
when SHs are treated with Matrige1®, the ex- 
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pression of CYPIA1/2, 2B1, 3A2, and4A1 pro- 
teins increases and is further induced in rising/ 
piling-up cells by the appropriate agent.  Enzy- 
matic activities of CYPIA,2B, and 3A also in- 
crease after Matrige1⑧treatment.   In addition, 
we recently reported that aryl hydrocarbon re- 
ceptor(AhR), constitutive androstane receptor 
(CAR), pregnane X receptor(PXR) and retinoid 
X receptor(RXR) αwere expressed in SHs to 
the same degree as in MHs'2).   Expression of 
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CYPIA1/2,2B1, and3A2 in SHs depends on the 
expression of AhR, CAR, PXR and RXRα.  On 
the other hand, CYP2E1 expression decreases 
with time in culture and the cells treated with 
Matrige1®dramatically lose lt.  The expression 
and inducibility of CYP can also be maintained 
in cryopreserved SHs'3).  Even after cryopreser- 
vation for more than a year, thawed SHs can 
proliferate to form a colony and maintain he- 
patic functions, though MHs cannot grow and 
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Figure 2. m ustration of SH maturation and hepatic organoid formation.
(A) A single SH proliferates to form a colony, while NPCs such as stellate cells and LECs separately 
grow.  (B) An SH colony and NPCs accidentally attach to each other and then NPCs invade under the 
colony.  ECM produced by cells accumulates under the SH colony.  ECM may induce the alteration of 
the SH shape from small and flat to large and thick.  (C) ECM is assembled to make BM.  Rising cells 
appear in the colony.  With the increase of the cell volume, the maturation of the cells progresses and 
the polarity of cell membranes may be established, and the apical domain of the membrane forms Bc 
with adjacent cells.  (D) Rising cells slowly proliferate to expand on the colony and the"pjled-up" cells 
cover the colony to reconstruct hepatic organoids.  The structure consists of 2 to3 layers of cells, and 
between the cells BC horizontally elongate to form networks. (Reffo) 
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rapidly lose hepatic differentiated functions'3''4). 
In addition, after treatment with Matrige1①, it 
has been confirmed that mature SHs possess 
CYP activity and testosterone can be sequen- 
tially metabolized as effectively as by MHs'3). 

3. Reconstruction of bile canaliculi in hepatic 
organoids

In the normal mammalian liver the hepato- 
cyte is a highly differentiated cell that has func- 
tional transport polarity.  Its plasma membrane 
is divided into three functionally and structur- 
ally distinct domains: the sinusoidal domain, the 
lateral domain, and the BC domain. The BC do- 
main of paired hepatocytes is separated from 
the lateral domain by tight junctions and forms 
BC.  BC are rich in microvilli, and components 
of bile, which are produced and metabolized in 
the cells, are secreted into the structure.  The 
secreted bile passes through the BC and pours 
into bile ducts(BDs).  Between rising/piling-up 
cells BC-like structures are formed and develop 

into anastomosing networks with time in cul- 
ture(Fig 3)5,'6).

To show that the BC-like structure has the 
same physiological functions as fnvlvo BC do, it 
is important to examine whether the plasma 
membranes forming the structure have polarity.
Immunocytochemical  analysis  has  indicated 
that membrane proteins of BC such as dipepti- 
dy1 peptidase IV (DPPIV), ectoATPase,5'-nu- 
cleotidase, and multidrug resistant related pro- 
tein 2 (MRP2) are restrictedly 1ocalized in the 
BC membrane'6).  Actin filaments are assembled 
under the membrane and tight junctional pro- 
tein Z01 is stained along the tubular structure. 
Ultrastructurally, microvilli are well developed 
in the lumen of the structure and tight junc- 
tions are observed in the end of the lateral 
membrane close to the BC-like structure.

The vectorial transport of materials such as 
bilirubin, bile salts, and organic anions from se- 
rum to BC is actively performed in hepatocytes. 
The sinusoidal uptake of bile salts and organic 

Figure3. Bile canaliculi in a hepatic organoid.   Fluorescent diacetate was added to the culture medium and 
metabolized fluorescein was secreted into BCs.   Beautiful anastomosing networks of bile canaliculi 
can be observed by fluorescent microscopy. 
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anions is mediated by Na+-dependent taurocho- 
late cotransporting polypeptide(NTCP) and Na+ 
-independent organic  anion-transporting pro- 
teins (0ATPs), respectively.    Conjugated bile 
salts and organic anions are actively secreted 
through the bile-salt export pump (BSEP) and 
MRP2 expressed at the apical membrane, re- 
spectively. In cultured SHs the gene expression 
of basolatera1 (0atp1/2/4 and Ntcp) and BC 
transporters  (Mrp2/multidrug  resistance   2/ 
Bsep) is low'6,'7).  When SHs maintain the small 
and flattened shapes,0ATP1 and OATP2 pro- 
teins are not distributed in the cell membrane, 
whereas large and rising/piling-up cells restrict- 
edly express both proteins in basolatera1 mem- 
branes and MRP2 localizes on the BC mem- 
brane.   The production of the membrane pro- 
teins may not be sufficient for the maturation of 
SHs.   Sorting them toward the proper site in 
the cell membrane is necessary to generate 
membrane polarity.  Therefore, the acquisition 
of membrane polarity is required for SHs to 
complete  their maturation.    Although  mem- 
brane  polarity  is formed  in  rising/piling-up 
cells, the mechanism of the process is not well 
understood. 

We examined whether the rising/piling-up 
cells  with  membrane  polarity  had  vectorial 
transport of substances from medium to BC. 
Bilirubin is taken up by OATP2, glucuronized in 
the cytoplasm, and then secreted into BC via 
MRP2.  Fluorescent diacetate(FD) is taken up 
by passive diffusion, and then decomposed by 
esterase into acetate and fluorescein.  The fluo- 
rescein is secreted into BC via MRP2 (Fig 3). 
When bilirubin or FD is added to the culture 
medium, metabolized substances are secreted 
into BC formed in rising/piling-up cells.  Inter- 
estingly, cells that possess large cytoplasm and 
retain bilirubin and fluorescein appear in the 
process of colony development.  This phenome- 
non means that, although esterase and MRP2 
are expressed in the cells, MRP2 is not sorted to 
the apical membrane of the cells.    In other 
words,large cells not forming functional BC are 
not able to distribute MRP2 proteins to their BC 
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membranes. In  rising/piling-up  cells  the  se- 
creted bilirubin and fluorescein accumulate in 
tubules and cystic regions for along time5,'6). As 
the structure is tightly sealed, the secreted sub- 
stances are not released from lt. Furthermore, 
the tubular structures spontaneously and se- 
quentially repeat contraction and dilatation like 
a peristaltic movement'5,'7).   Dye microinjected 
into rising/piling-up cells can rapidly flow along 
BC. Considering the expression of gap junc- 
tional protein connexin 32 and the assembly of 
actin filaments along BC networks, signals may 
be sequentially transduced through gap junc- 
tions into adjacent cells and cause synchronous 
peristaltic  contractions'7).  Thus,  the  BC-like 
structure formed in rising/piling-up cells seems 
to have almost the same morphological charac- 
teristics and functional competence as BC in 

4. Hepatic organoid formation using scaffolds
When SHs and NPCs are plated on culture 

dishes and cultured, hepatic organoids with BC 
can be formed. However, it takes along time to 
reconstruct them in a dish and the number of 
the colonies with rising/piling-up cells Isl/3-1/4 
of all colonies even 30 days after plating9).  To 
establish the  applicability  of the  tissues for 
transplantation and an artificial liver, it is impor- 
tant to develop methods with which a large 
number of hepatic organoids can be rapidly and 
efficiently formed.  We used the method of "tis- 
sue engineering, the combination of cells and a 
scaffold"  Two different approaches have been 
tried;one is to use a collagen sponge'8,'9), the 
other to use polycarbonate membranes2°).
1 )   Rat SH colonies consisting of 30~50 cells 
are first formed in dishes and then separated 
from the dishes'8). Collected colonies are poured 
onto collagen sponges(Helistat⑧) and cultured. 
SH colonies expand toward the inside of the 
sponge and the maturation of SHs gradually 
progresses.   The secretion of serum proteins 
and urea increases with time in culture and 
CYPIA1 is expressed.   After treatment with 
FD, fluorescein is excreted into BC and BC net- 
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works are clearly observed inside the sponge. 
The results mean that SHs may differentiate 
into MHs in the sponge. BD-like structures are 
also formed in the sponge, whereas sinusoid and 
vessel formation are not obvious.  Finally,large 
hepatic organoids with well-developed BC net- 
works are reconstructed in the sponge.  On the 
other hand, when human hepatic cells(including 
MHs, SHs, and NPCs) isolated from a normal 
adult liver are directly plated on the sponge and 
cultured in medium supplemented with nicotina- 
mide, human serum, HGF, and so on'9), about a 
month later, hepatic organoids with BDs are 
formed in the sponge and the upper surface of 
the sponge is covered with biliary epithelial 
cells.  Although the formation of functional BC 
was not confirmed, their structure was ultra- 
structurally observed between the cells.  Thus, 
with a collagen sponge, a large number of he- 
patic organoids may be efficiently reconstructed 
within a relatively short period.  Until now, no 
connection between BC and BDs in the sponge 
has been observed to develop in the hepatic or- 
ganoids.
2 ) Pairs of polycarbonate membranes are pre- 
pared and SHs are separately cultured on each 
membrane2°).  After SHs expand to form large 
colonies,one membrane is inverted on top of 
the other to form an SH bilayer. SHs of the up- 
per and lower layers adhere to one another and 
form 3D stacked-up structures.  Hepatic differ- 
entiated functions increase in the cells and func- 
tional BCs are formed between adhering sur- 
faces of the cells.

To investigate the roles of hepatic stellate 
cells(HSCs) in sinusoids, we established a tricu1- 
ture model of SHs, HSCs, and endothelial cells 
(ECs)2').  Cells of the SH fraction isolated from a 
normal rat liver were plated on a microporous 
membrane and ECs were cultured on the oppo- 
site site of the membrane.  With a specific pore 
size, HSCs were intercalated between layers of 
hepatocytes and ECs,owing to the limitation of 
HSC behavior. When only cytoplasmic processes 
of quiescent HSCs were adjacent to ECs, and 
the HSC bodies remained on the side of the he- 

patocytes, the ECs changed morphologically and 
were capable of long-term survival. We con- 
firmed that HSCs mediated the communication 
between hepatocytes and ECs in terms of EC 
morphogenesis. 

5. Studies on small hepatocytes as hepatic pro- 
genitor cells

Investigation of specific markers of SHs has 
been carried out.   GeneChip analysis revealed 
that CD44, D6.IA, and BRI3 were specifically 
expressed in SHs22).  CD44 plays a role in adhe- 
sion of cells to an ECM such as HA, collagen or 
fibronectin.   SHs have been shown to express 
both CD44 standard and variant6 forms and 
the expression disappears with the maturation 
of SHs. Although CD44 is expressed in cultured 
SHs, no CD44+hepatocytes are found in the nor- 
mal liver. When the rat liver is severely injured 
by hepatotoxins such as galactosamine (GaiN) 
and  2-acetylaminof1orene,  CD44+  hepatocytes 
transiently appear in the periportal regions of 
the liver lobules22). CD44+ cells isolated from the 
GaiN-treated rat liver possess the characteris- 
tics of SHs. When the CD44+cells isolated from 
DPPIV+rat livers are transplanted into the rat 
liver(DPPIV-) treated with retrorsine and 2/3 
partial  hepatectomy   (Ret/PH)   through   the 
spleen, they can integrate into hepatic plates 
and proliferate to form DPPIV+foci23).   Trans- 
planted cells can repopulate the recipient liver 
and some of the foci survive for more than one 
year(manuscript submitted for publication).

Stem or progenitor cells have been consid-
ered as candidate cell sources of transplantation 
because they can expand fn vltro and be cryo- 
preserved for along term.   The cells derived 
from adult and fetal livers and other organs 
have been shown to differentiate into cells with 
hepatic  characteristics  In  vitro.  In  addition, 
most of the cells can differentiate into hepato- 
cytes in the recipient livers of genetically al- 
tered mice, and in toxic injury models.  On the 
other hand, it is also known that hepatic stem/ 
progenitor cells in adult livers are activated 
when the proliferation of MHs is inhibited by 
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hepatotoxins.  Among them, oval cells and SHs 
are well recognized as stem and progenitor 
cells, respectively.   Oval cells, named for their 
possession of ovoid nuclei, are known to express 
markers for cell membrane proteins such as CD 
34, c-kit, and Thy1, shared hematopoietic stem 
cell markers. Recently, we reported that Thy1+
cells isolated from the liver injured by GaiN 
could differentiate into hepatocytes through CD 
44+SHs23).   Table t shows the phenotypes of 
Thy1+, CD44+, cultured SHs, and MHs.   Both 
transplanted Thy1+and CD44+cells sorted from 
GaiN-treated rat livers can survive, proliferate, 
and differentiate into hepatocytes in Ret/PH 
treated livers (Fig 4).    Therefore, when the 
stem/progenitor cells are transplanted into in- 
jured livers, rapid growth and expanded re- 
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population of donor cells can be expected.  We 
are continuing our experiments to clarify the ca- 
pacity of SHs. 

6. Studies on biliary epithelial cells
Bile is produced by hepatocytes, secreted 

into BC, and then drained through bile ducts 
that consist of biliary epithelial cells(BECs).  To 
reconstruct hepatic organoids with bile drainage 
systems, formation of bile ducts in culture is es- 
sential. We succeeded in developing the forma- 
tion of bile ductular networks by using a pri- 
mary culture of BECs isolated from a normal 
rat liver24).  Isolated BECs were plated on colla- 
gen gel and cultured in the medium used for SH 
culture, in which HGF and transferrin were 
added, for4 days. Then, the cells were overlaid 

Table t   Phenotypes of the cells related to hepatic lineage 

Markers Small                Mature
Thy1+ cells       CD44+cells hepatocytes       hepatocytes 

Stem/Progenitor cells 
Thy1
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AFP
EpCAM 
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with collagen gel and 1% dimethylsulfoxide was 
added to the medium from 7 days after plating.
After collagen gel overlay, BECs gather to 
form small ductules and large BD structures are 
gradually reconstructed.  The large BD consists 
of 7 tole BECs with inner diameters of from 20 
to50µm, and forms interconnected networks of 
continuous lumina. The cells can respond to se- 
cretin, and transporter proteins such as AE2 
and CFTR 1ocalize in the  apical membrane.
Therefore, the structures may be functionally 
and morphologically similar to BDs fn rlvo.

We also found that hepatic stem cells ex- 
isted in biliary ductules and that the activation 
might occur even in regeneration of the normal 
1iver25).  When a thermoreversible gelation poly- 
mer(TGP) was applied to a focal defect of the 
rat liver, complete recovery of hepatic tissues 
was observed without granulation. Ductular re- 
actions appeared around the wound and duc- 
tules elongated from BD in Glisson's sheath to 
the injured area. The cells in the ductules show 
the phenotype of oval cells(AFP+/albumin+/CK 
19+/c-Kit+/Thy1+) and then lose it(AFP-/albu- 
min+/CK19+/c-Kit-/Thy1-).     Finally,  the  cells 
lose the characteristics of BECs(CK19-) and dif- 

ferentiate into hepatocytes.   The isolated and 
cultured ductular cells can differentiate into he- 
patocytes after the cells are covered with TGP. 

7. The roles of laminin in the development 
and regeneration of organs

Laminins are a diverse group of α/β/γhet- 
erotrimers formed from five α, three βand 
threeγchains; they are major components of all 
basal laminae.   Among the 3 types of laminin 
chains, αchains play pivotal roles in laminin- 
mediated cellular functions.   W e have focused 
on the roles of lamininαchains and their recep- 
tors in hepatic regeneration and hepatocellular 
carcinoma, as well as in cell adhesion.
1) To investigate the roles of laminins in normal 
and  regenerating livers,  their spatiotemporal 
depositions were characterized by immunohisto- 
chemistry26). Hepatic laminin chains are vari- 
ously distributed in Glisson's sheath, sinusoids, 
central veins, and mesothelium.  Of thelaminin 
chains, we found that laminin α1 was tran- 
siently expressed in sinusoids during hepatic re- 
generation.  lnv1'fro studies also suggest that 
transient expression of lamininα1 is associated 
with reorganization of liver lobules. 

Figure4. Transplantation of SHs into an injured rat liver.   CD44+cells isolated from a galactosamine-treated 
rat liver(DPPIV+rat) were transplanted into a retrorsine-treated rat liver(DPPIV- rat).  At60
days after transplantation, a frozen section is enzyme-histochemically stained with DPPIV. 
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2) The Lutheran blood group glycoprotein(Lu), 
also known as basal cell adhesion molecule(B- 
CAM), is an immunoglobulin superfamily trans- 
membrane receptor forlamininα5. To examine 
cell adhesion tolamininα5 via Lu/B-CAM, the 
binding site of Lu onα5 was characterized27). Lu 
/B-CAM binding tolamininα5 requires theα5 
LG1-3 tandem, as do integrinα3β1 and α6β1 
binding tolaminin.0ur results have also shown 
that Lu/B-CAM andα3131/α6131 integrins com- 
petitively bindlamininα5.
3) Lamininα5 is distributed as a major compo- 
nent in human hepatocellular carcinoma(HCC)28). 
W e also found that Lu/B-CAM and integrinα3 
β1/α6β1, receptors for laminin α5, were ex- 
pressed in HCC. In vitro studies have also sug- 
gested that the deposited laminins containing 
theα5 chain interact with HCC cells through 
these receptors. 

8. Cadherin mediated cell-cell adhesion system
Classic cadherins are major cell-cell adhe-

sion molecules involved in  the  development, 
maintenance and function of most tissues.   In 
addition, cadherins play important roles in cell 
signaling, proliferation, recognition and differen- 
tiation.   The loss of E-cadherin expression in 
late stage tumors leads to the promotion of in- 
vasion and metastasis.  Current issues being in- 
vestigated are the molecular mechanisms under- 
lying the regulation of cadherin's adhesive func- 
tion, the cadherin cytoplasmic region, the actin 
cytoskeleton,  and  how  intracellular  signaling 
molecules control the state of the adhesive bond 
at the cell surface.  In previous studies, we es- 
tablished chemical cross-linking analysis to ex- 
amine the presence of the lateral dimer form of 
E-cadherin at the cell surface.  As a result, we 
confirmed that E-cadherin formed a lateral di- 
mer, termed the"cis-dimer", fn vrvo.  Based on 
these findings, we propose that the"cis-dimer" 
form is a"functional unit" in regulation of cad- 
herin-based cell-cell adhesion.  In addition, the 
formation of the"cis-dimer"of E-cadherin is un- 
affected by cell-cell adhesion and cytoskeleta1 
organization29). 
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Perspectives
Since I was promoted to professor,8 years 

have passed.  During that period, we first tried 
to identify specific markers for "small hepato- 
cytes" and found3 candidates, CD44, D6.IA, and 
BRI3.  CD44 is the most specific marker among 
them.   Proliferating SHs express CD44, while 
the expression disappears with the maturation 
of the cells. Using HA, which is a ligand for CD 
44, we succeeded in selectively isolating SHs 
and culturing them in a serum-free medium. 
For the clinical application of the stem/progeni- 
tor cells, the expansion of the cells must be per- 
formed in serum-free conditions.   In addition, 
until now, the differentiation/maturation of stem 
cells to specific cells, especially those originating 
from endoderm such as digestive tissues, is still 
difficult to induce in culture.  Although various 
hepatocyte-like cells induced from human ES 
and IPS cells have been reported by many labo- 
ratories, the cells do not possess full hepatic dif- 
ferentiated functions.    Most cells  have  only 
some hepatic characteristics, whereas SHs can 
maintain many highly differentiated functions In 
vitro for along time even after long-term cryo- 
preservation.  Recently, we succeeded in sepa- 
rating human SHs from the liver of an aged per- 
son.  We believe that SHs have great potential 
to be a cell source for transplantation.  We are 
now studying the development and functions of 
BECs as well as SHs.  To reconstruct liver tis- 
sues, a combination of hepatocytes and the bili- 
ary system is necessary. In the near future, by 
establishing an effective method for cell expan- 
sion and reconstructing a large-sized hepatic 
tissue fn vltro, we would like to make trans- 
plantable liver tissue.   We hope that our re- 
search will result in helping patients suffering 
from hepatic diseases. 
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