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ABSTRACT 

Multiple myeloma continues to be a lethal 
malignancy despite the development of treat- 
ments such as high-dose chemotherapy com- 
bined with stem cell transplantation. Multiple 
myeloma arises through an accumulation of mul- 
tiple genetic changes, including immunoglobulin 
gene rearrangements involved in Cyclin D. The 
main difficulties in multiple myeloma treatments 
are drug-resistance. DNA methylation of the5' 
CpG islands of genes is often found in multiple 
myeloma. To screen for the genes involved in 
tumorigenesis of multiple myeloma, which are 
silenced by DNA methylation, we performed 
cDNA   microarray   analysis   using   multiple 

myeloma cell lines treated with demethylating 
agent5-aza-2'-deoxycytidine(DAC), and identi- 
fied RASD1, a dexamethasone (Dex)-inducible 
gene,  as  one  of  the  targets  of  epigenetic 
changes. Inactivation of RASD1 was found to 
correlate with resistance to Dex, and treatment 
of multiple myeloma cells with DAC restored 
sensitivity to Dex. These findings suggest the 
involvement of epigenetic gene silencing in mul- 
tiple myeloma progression and drug-resistance, 
and the usefulness of demethylation therapy for 
multiple   myeloma   treatment.   Furthermore, 
DNA   methylation   can   be   an   epigenetic 
biomarker for multiple myeloma. 
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INTRODUCTION
Epigenetic gene regulation such as DNA 

methylation and histone modification is consid- 
ered to play a significant role in tumor develop- 
ment as well as in tumorigenesis.  Under physi- 
ological conditions, DNA methylation plays a 
role in genome imprinting, X-chromosome inac- 
tivation, and suppression of repetitive sequences'). 
DNA methylation of the5' CpG islands of genes 

is an epigenetic alteration that leads to heritable 
changes in gene  expression through recruit- 
ment of histone deacetylases and histone meth- 
yltransferases, which leads to condensation of 
chromatin. Genome-wide hypomethylation and 
regional  hypermethylation  are  the  common 
events in tumors2).

In the current review, we discuss the role 
of DNA methylation changes and their potential 
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application for epigenetic biomarkers for predic- 
tion of sensitivity to chemotherapeutic drugs in 
multiple myeloma. 

1. Molecular mechanisms involved in tumori- 
genesis of multiple myeloma. 

Multiple myeloma is a plasma cell neoplasia 
in bone marrow characterized by secreted mon- 
oclonal immunoglobulin and clinical features, in- 
cluding lytic bone lesions, anemia, renal function 
impairment, immune compromise, and hypercal- 
cemia. It can occur de novo or evolve from an 
asymptomatic  premalignant  stage  of  clonal 
plasma  cell proliferation,  termed  "monoclonal 
gammopathy   of   undetermined   significance" 
(MGUS). Approximately 1% of individuals with 
MGUS evolve to multiple myeloma per year3). It 
is estimated that there will be20,180 new cases 
of multiple myeloma diagnosed in the United 
States and 10,650 deaths attributed to this dis- 
ease in2010 alone, which is nearly2% of all can- 
cer deaths4). Multiple myeloma arises through an 
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accumulation of multiple genetic changes, in- 
cluding point mutations, chromosomal gains and 
losses, and non-random chromosomal trans1oca- 
tions such as immunoglobulin gene rearrange- 
ments involved in cyclin D, as well as of epige- 
netic alterations5,6) (Fig.1).

Multiple myeloma continues to be a lethal 
malignancy despite the development of treat- 
ments such as high-dose chemotherapy com- 
bined with stem cell transplantation due to che- 
motherapeutic resistance and, therefore, new 
treatment approaches are needed to improve 
the patient outcomes7). Recently, a bidirectional 
approach to translational research, moving labo- 
ratory discoveries to clinical settings or clinical 
observations to the laboratory environment, has 
been established in multiple myeloma8-'°). Actu- 
ally, in the past decade, there have been major 
advances in the treatment of multiple myeloma; 
new classes of drugs, including proteasome in- 
hibitor bortezomib'','2), thalidomide'3), and its im- 
munomodulatory derivativelenalidomide'4), have 
emerged as highly active agents in the treat- 
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Figure l   Molecular mechanisms involved in tumorigenesis of multiple myeloma 
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mont  of  multiple  myeloma.  Dexamethasone 
(Dex) has long been a key drug due to its effi- 
cacy for killing multiple myeloma cells'5,'6).  Dex 
is used even in very new regimens with borte- 
zomib, thalidomide,or lenalidomide'','2,'7,'8). The 
main difficulties in multiple myeloma treatments 
are drug-resistance and opportunistic infection 
due to long-term and high-dose use of Dex. To 
overcome these problems, attempts have been 
made to find a new agent that enhances Dex 
cytotoxicity to multiple myeloma cells8-'','9-2'). 

2. DNA methylation. 

Epigenetics is  heritable  information  that 
does not affect DNA sequences. Among such 
changes, DNA methylation and modification of 
histone have been well-studied. In physiological 
states, DNA methylation plays a role in gene 
imprinting, X-chromosome inactivation, and si- 
lencing of repetitive sequences. DNA methyla- 
tion, which occurs in cytosine bases located5' to 
a guanine, known as CpG or CG dinucleotide, is 
catalyzed by three  DNA  methyltransferases, 
DNMT1, DNMT3A, and DNMT3B, and plays a 
role in gene silencing(Fig 2A,2B). Knockout of 
DNMT1 together with DNMT3B in a colorectal 
cancer cell line, HCT116 cells(DK0 cells), re- 
sults in demethylation of 95% of methy1-cyto- 
sines22). DNA methylation leads to significant 
changes in chromatin structures, including re- 
cruitment of methy1-CpG binding domain pro- 
teins, deacetylation, and methylation of histone 
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tails. Treatment of colorectal cancer cells with5 
-aza-2'-deoxycytidine(DAC) together with his- 
tone deacetylase inhibitor, trichostatin A (TSA), 
induces gene expression in a synergistic man- 
ner23). Analysis of target genes of polycomb re- 
pressive complexes in  pluripotent embryonic 
stem cells(ESCs) has shown that patterns of 
polycomb-based repression are closely associ- 
ated with target genes of DNA methylation in 
cancer, indicating a crosstalk between polycomb 
marks and DNA methylation24,25). In fact, EZH2, a 
histone methyltrasferase, which is a component 
of polycomb repressive complex2, is frequently 
overexpressed in a variety of cancers26).

Studies of DNA methylation in multiple 
myeloma have identified certain key genes as 
targets for epigenetic inactivation, including cell 
-cycle regulators such as CDKN2A27), CDKN2B27), 
and CHFR28), and genes involved in cell signaling 
such as RASSF129), and TGFl3 receptor II3°), 
genes involved in apoptosis such as DAPK13') 
and BNIP332), and genes involved in antigen 
presentation such as CIITA33) (Table t). Given 
the fact that more than one thousand genes are 
silenced by DNA methylation in colorectal can- 
cers34), the target of epigenetic inactivation in 
multiple  myeloma may be largely unknown.
Therefore, identification of novel genes epige- 
netically inactivated in multiple myeloma is of 
great importance for better understanding of 
the pathogenesis of the disease. 

Table t. Genes epigenetically silenced in multiple myeloma 
Gene                   Chromosomal location   Function
CDKN2A            9p21.3                 Inhibition of cyclin-dependent kinase
CDKN2B            9p21.3                 Inhibition of cyclin-dependent kinase
CHFR                 12q24.33             Mitotic checkpoint
RASSFIA          3p21.31               Inhibition of Ras signaling
TGF-betareceotor2 3p24.1                 Suppression of cell growth, serine/threonine kinase 
DAPK1               9q21.33               Apoptosis
BNIP3                 10q26.3               Apoptosis
CIITA                16p13.13             Activtor of class II antigen 

References
27
27
28
29
30
31
32
33 



24 H. YASUI et al 

3. Epigenetic biomarkers for prediction of 
sensitivity to chemotherapeutic drugs in multi- 
ple myeloma and other types of cancer 

To screen for tumor-related genes that are 
silenced  by  DNA  methylation  in   multiple 
myeloma cells, we performed cDNA microarray 
analysis  using  multiple  myeloma  cell  lines 
treated with mock or DAC.  RASD1 was origi- 
nally identified as a Dex-inducible gene35), and 
has been shown to be a receptor-independent 
activator of G-protein signaling36,37).  RASD1 be- 
longs to the Ras-1ike gene family(e.g. RIG, ARH 
1/NOEY2,  RRP22), which has recently  been 
shown to suppress cell growth38-40). RASD1 is lo- 
cated in chromosome 17p11.2, in which frequent 
loss of heterozygosity is detected in various hu- 
man tumors, and suppresses cell growth4').  In 
addition, Furuta et al have reported epigenetic 
inactivation of RASD1 in a melanoma cell line42), 
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indicating that inactivation of RASD1 leads to a 
growth advantage for tumor cells.

While the hypermethylation of RASD1 was 
observed in approximately 10% of primary mul- 
tiple myeloma samples, the methylation levels of 
RASD1 were elevated in allot the multiple 
myeloma cases that had pair DNAs after re- 
peated anti-tumor therapy, including Dex. In 
addition, multiple myeloma cells that showed 
methylation of RASD1  are resistant to  dex- 
amethasone, and treatment with Dex with DAC 
restored the cytotoxicity of Dex to tumor cells 
(Fig 3,4). These findings suggest the involve- 
ment of epigenetic gene silencing in multiple 
myeloma progression and drug-resistance, and 
the  usefulness of demethylation  therapy for 
multiple myeloma treatment.

There is evidence to suggest that epige-
netic inactivation of cancer-related genes, in- 
cluding cell-cycle checkpoint and DNA repair, 
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Figure2. DNA methylation.
(A) In mammals, DNA methylation occurs at the5' position of cytosine by DNA methyltransferases.
DNA methylation is an epigenetic change that can be reversed by DNA methyltransferase inhibitors.
(B) In cancer cells, CpG-rich regions, so-called CpG islands, are aberrantly methylated, which leads to a 
silencing of cancer-related genes. 
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are associated with sensitivity to chemothera- 
peutic agents in multiple myeloma and other 
types of tumors. We have found that a mitotic 
checkpoint gene, CHFR, is inactivated by DNA 
methylation in multiple human neoplasia, includ- 
ing multiple myeloma28). The microtubule inhibi- 
tors  induced  apoptosis  among  cancer  cells, 
showing CHFR methylation, and indicated that 
adenovira1 introduction of CHFR into methyl- 
ated cancer cell lines restores the checkpoint 
and reduces the incidence of apoptosis43).  This 
correlation between CHFR methylation and sen-
sitivity to microtubule inhibitors appears to be 
specific, as there was no correlation between 
CHFR methylation and sensitivity to other che- 
motherapeutic agents or to ultraviolet.   These 
results suggest that CHFR methylation could be 
used as an epigenetic biomarker marker to pre- 
dict the sensitivity of tumors to microtubule in- 
hibitors.  Consistent with that idea, Koga et al 
have found that86% of patients with methyl- 
ated CHFR tumors showed some regression or 
no progression of their disease when treated 
with a microtubule inhibitor, whereas80% pa- 
tients with unmethylated CHFR tumor showed 
progressive  deterioration44).  A  correlation  be- 
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tween CHFR methylation and sensitivity to mi- 
crotubule inhibitors has also been noted in oral 
squamous cell carcinoma45). Thus, CHFR methyl- 
ation may be a clinically useful indicator of the 
responsiveness of cancers to treatment with mi- 
crotubule inhibitors. The fact that CHFR is fre- 
quently inactivated by genetic or epigenetic al- 
teration in human cancers suggests that this 
cancer-specific checkpoint defect could also be 
a useful therapeutic target. Bearing that in 
mind,  we  recently  established  a  system  to 
knock down CHFR expression using shRNA45). 
We found that CHFR expression was signifi- 
cantly suppressed in cancer cells transfected 
with shRNA. The resultant impairment of the 
prophase checkpoint led to an increased mitotic 
index in cells treated with microtubule inhibi- 
tors, which in turn led to an increased incidence 
of apoptosis among the cells. This effect was 
specific to microtubule inhibitors, as no effect 
was seen when a DNA-damaging agent was 
used.   In addition, the earlier finding that E3 
ubiquitin ligases can be targeted using small 
molecules46)  suggests  that  drugs  that  inhibit 
CHFR's ubiquitin ligase activity could also be 
useful for enhancing the sensitivity of cancer 
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Figure3. Cytotoxic activity of Dex combined with DAC.
An MST-8 assay was performed to examine the cytotoxic activity of dexamethasone(Dex) com-
bined with 5-Aza-2' -deoxycytidine(DAC). Relative amounts of variable cells are shown on the Y
-axis.  OPM1 cells show that methylation of RASD1 is resistant to dexamethasone.  When cells 
were treated with Dex with DAC,  resistance to Dex was restored.    (***P < 0.001 ;  one way
ANOVA with post hoc Dunnett's test) 
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cells to microtubule inhibitors.
Genes involved in DNA repair have also been 
shown to be associated with the response to 
chemotherapeutic drugs. The first report on epi- 
genetic alteration associated with sensitivity to 
chemotherapeutic drugs demonstrated an asso- 
ciation   between   0(6)- methylguanine- DNA- 
methyltransferase  (MGMT)  methylation  and 
sensitivity to DNA-alkylating agent47). MGMT is 
a DNA repair enzyme that removes mutagenic 
adducts from 06-guanine in DNA48) Epigenetic 
silencing of MGMT has been reported in human 
neoplasia, including that in the colon, stomach, 
and glioma49). Methylation of MGMT has been 
shown to be associated with G:C to A:T transi- 
tion mutations, indicating that MGMT inactiva- 
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tion leads to genetic instability50,5'). Alkylating 
agents are one of the most widely used che- 
motherapeutic agents in human cancers. MGMT 
is a DNA repair enzyme that repairs the 06 po- 
sition of guanine, which is most frequently modi- 
fied by alkylating agents. Therefore, the toxicity 
of alkylating agents is reduced in the presence 
of MGMT52). In glioma, an enhanced sensitivity 
of patients with reduced MGMT expression has 
been observed47). MGMT methylation has been 
shown to be associated with the response to a1- 
kylating agents in glioma, and can be an epige- 
netic   biomarker   for   glioblastoma   patients 
treated with alkylating agents53,54).

A subset of colorectal cancers shows meth- 
ylation  of a mismatch  repair  gene,  hMLH1, 
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Figure4.  Demethylating agent restores the sensitivity of multiple myeloma cells to dexamethasone 
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which is associated with microsate11ite instabil- 
ity55). Colorectal cancers with microsate11ite in- 
stability are clinically less aggressive, but re- 
spond poorly to5-?uorouraci156).The thymidylate 
synthase, which is necessary for DNA synthesis, 
and inhibition of thymidylate synthase is an im- 
portant mechanism for the anticancer effects of 
5-fluorouracil. It has been reported that colorec- 
tal cancers with hMLH1 methylation express 
high levels of thymidylate synthase57). Colorectal 
cancer cell lines showing microsate11ite instabil- 
ity due to methylation of hMLH1, which is resis-
tant to 5-fluorouracil, become sensitive after 
treatment treating cells with DAC58), indicating 
that hMLH1 methylation can be an epigenetic 
marker to predict the sensitivity of colorectal 
cancer to5-fluorouracil.

In summary, DNA methylation plays an im- 
portant  role   in   tumorigenesis   of  multiple 
myeloma. Drug-resistance of multiple myeloma 
can be reversed by demethylation therapy for 
multiple myeloma treatment.0ur results also 
suggest that DNA methylation can be a useful 
biomarker to predict sensitivity to chemothera- 
peutic drugs. Further analysis using a genome- 
wide approach will be necessary for a compre- 
hensive study to clarify the molecular mecha- 
nisms of drug-resistance in multiple myeloma. 
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