ラット肝 S9 フラクション(S9)とヒトシトクローム P450 1A1(CYP1A1)にて 活性化した多環式芳香族炭化水素類により処理された pUC19-*lacZ* C¹⁴¹ DNA の 標的塩基配列における突然変異について

Mutations on the Target Nucleotide Sequences in pUC19-*lacZC*¹⁴¹ DNA after Exposure to Polycyclic Aromatic Hydrocarbons Activated with Rat Hepatic S9 Fraction (S9) and Human Cytochrome P450 1A1 (CYP1A1)

加藤 芳伸 小川 廣

Yoshinobu KATOH and Hiroshi OGAWA

Key words: pUC19-*lacZC*¹⁴¹ DNA; target nucleotide sequences (標的塩基配列); polycyclic aromatic hydrocarbons (多環式芳香族炭化水素類); mutations (突然変異)

著者らは、発がん性物質の高感度評価法の開発の一環と して、化学物質の変異原性を解析するための試験法 pUC19-*lacZ*C¹⁴¹ DNA reversion assay system を作成し た¹⁾. これは、pUC19-*lacZ*C¹⁴¹ DNA プラスミドを化学物 質にて処理した後、宿主の大腸菌に導入して、プレート上 に現れる β -ガラクトシダーゼ活性の復帰した青色コロ ニーの発生率より化学物質の変異原性を評価する試験法で ある. pUC19-*lacZ*C¹⁴¹ DNA reversion assay system は、 化学物質に応じて試験条件を適宜調節することができる. また、様々な性質を持った宿主菌が使用できるため、 DNA の損傷による突然変異の修復機構についても解析を 行うことが可能である. さらに、*lacZ*-DNA の 141 番目 から 143 番目のグアニンが連続した標的塩基配列 (GGG) にて誘導される突然変異の様相を明らかにするこ とができる.

先に,著者らは大腸菌 BMH71-18 *mutS*を宿主菌として pUC19-*lacZ*C¹⁴¹ DNA reversion assay system を行い, 18 種類の多環式芳香族炭化水素 (PAH)類の変異原性を 検討した.そして,ヒトシトクロームP450 1A1 (CYP 1A1)にて前処理した場合には,ラット肝 S9 フラクション (S9)前処理のように特定の PAH 類に高い変異原性 を誘導するのではなく,18 種類の PAH に一様に変異原 性が誘導されることを明らかにした²⁰.今回は,S9 と CYP1A1 にて 8 種類の PAH を代謝活性化し,SOS-DNA 損傷修復に関与する *rec*A 遺伝子欠損大腸菌 JM109 及びヌクレオチド除去修復に関与する遺伝子 *umuC* と *uvr*C欠損大腸菌 SURE[®]を宿主菌として^{3,4)}, pUC19*lacZ*C¹⁴¹ DNA reversion assayを行った.本報では pUC19-*lacZC*¹⁴¹ DNA 標的塩基配列(GGG)にて誘導さ れる突然変異について報告する.

方

法

1. 試 薬

pUC19-*lacZC*¹⁴¹ DNA reversion assay による変異原性 試験には、8種類のPAHを用いた。8種類のPAH は以 下のとおりである。

アントラセン類として、アントラセン (Ant), 1,2-ベン ゾアントラセン (1,2-BA), 2,3-ベンゾアントラセン (2,3-BA), ジベンゾ[a,c]アントラセン (DB[a,c]A), ジ ベンゾ[a,h]アントラセン (DB[a,h]A), ピレン類として, ピレン (Pyr), ベンゾ[a]ピレン (B[a]P), ベンゾ[e]ピ レン (B[e]P).

これらの PAH は、和光純薬工業㈱、Aldrich 社製の特 級試薬を購入して使用した。各々の PAH は、ジメチルス ルフォキシド (DMSO) に溶かして 10 μ g/mL 濃度の原 液を調製した後、原液を適宜希釈して、Aroclor 1254 で 処理したラットの肝組織より調製された S9 (和光純薬工 業㈱製) または CYP1A1 (第一化学薬品㈱製) にて前処 理を行って、pUC19-*lacZC*¹⁴¹ DNA と反応させた。

2. pUC19-lacZC¹⁴¹ DNA の調製

二本鎖に直接変異を導入するSite-directed mutagenesis法を用いて pUC19- $lacZC^{141}$ DNA を作成, 調製した^{1,2)}. この pUC19- $lacZC^{141}$ DNA は滅菌蒸留水に 溶かし、 $1 ng/\mu L$ 濃度になるように希釈・調製して, PAH との反応に使用した.

3. ラット S9 及びヒト CYP1A1 による PAH の前処理

Aroclor 1254 で処理したラットの肝組織より調製され た S9 (0.5 mg microsomal protein) (和光純薬工業㈱製) による PAH の前処理は Jerina の方法に準じて行った⁵. また, S9 前処理した PAH による pUC19-*lacZ*C¹⁴¹ DNA の処理及び PAH・pUC19-*lacZ*C¹⁴¹ DNA の調製は先報の 方法に従って行った². さらに, PAH・pUC19-*lacZ*C¹⁴¹ DNA は滅菌蒸留水 50 μ L に溶解して reversion assay に 供した.

次に、ヒト CYP1A1 cDNA の遺伝子が導入されている ヒト B リンパ芽球様細胞株 AHH-1 から調製された CYP1A1 ミクロソーム (25 pmol CYP1A1/mg microsomal protein) (第一化学薬品(㈱製)を用いて使用マニュ アルに従って PAH を前処理した. PAH・pUC19*lacZC*¹⁴¹ DNA は S9 処理の場合と同様の方法にて調製し て reversion assay に供した.

4. pUC19-lacZC¹⁴¹ DNA reversion assay

pUC19-*lacZC*¹⁴¹ DNA reversion assay は Ogawa らの 方法に従って行った¹⁾.本実験には、コンピテント細胞と して大腸菌 JM109 及び SURE[®]株を使用した。プラスミ ドを導入するためのコンピテント細胞の調製は、塩化カル シウム法に従って行った¹⁾. reversion assay には JM109:1.0×10⁶ transformants/µg pUC19, SURE[®]: 0.9×10⁵ transformants/µg pUC19 の形質転換能を持つ

コンピテント細胞を使用した.

pUC19-*lacZC*¹⁴¹ DNA reversion assay は Ogawa らの 報告に記載されている方法に従って実施した¹⁾.

5. lacZ DNA の塩基配列の決定

プレート上に形成された青色コロニーの一部を採取し、 培養した.大腸菌からのプラスミドの抽出・精製には、 QIAGEN Plasmid Tip-20 (Qiagen 社製)を用いた.精 製した pUC19-*lacZ* DNA は、滅菌蒸留水 20 μ L に溶かし、 シーケンシングに使用した.*lacZ* DNA の塩基配列は、 Dye-terminator cycle sequencing FS kit (Applied Biosystems 社製)を用いて決定した.*lacZ* DNA の塩基 配列は、ABI-PRISM377 DNA シーケンサ (Applied Biosystems 社製)により決定し、GeneWorks Ver. 2.5.1 (帝人社製)を用いて解析した.

結果及び考察

pUC19-*lacZ*C¹⁴¹DNA reversion assay によりPAH 類 の突然変異を解析した. 8 種類(Ant, 1,2-BA, 2,3-BA, DB[a,e]A, DB[a,h]A, Pyr, B[a]P, B[e]P)のPAH は,S9とCYP1A1により前処理を行った後,pUC19*lacZ*C¹⁴¹DNAと反応させた.このプラスミドを大腸菌 JM109及びSURE[®]に導入して突然変異誘発率を調べた. PAH 類による突然変異誘発率はTable 1 と 2 に示した. S9で前処理した場合,1,2-BAとDB[a,e]Aに特に高い

		And the second se		
Host	Chemical	Number of	Number of	Mutant
most	$(0.25 \ \mu g)$	transformants screened	revertant	frequency
JM109				
	Control	8.6×10^{5}	1	0.1×10^{-5}
	Anthracene	28.4×10^{5}	13	0.5×10^{-5}
	1,2-Benzanthracene	28.9×10^{5}	28	$1.0~ imes~10^{-5}$
	2,3-Benzanthracene	29.3×10^{5}	10	0.3×10^{-5}
	Dibenz[<i>a</i> , <i>e</i>]anthracene	19.8×10^5	32	1.6×10^{-5}
	Dibenz[a, h] anthracene	23.6×10^{5}	10	$0.4~ imes~10^{-5}$
	Pyrene	28.9×10^{5}	21	0.7×10^{-5}
	Benz[a]pyrene	29.0×10^{5}	17	0.6×10^{-5}
	Benz[e]pyrene	29.4×10^{5}	13	$0.4~ imes~10^{-5}$
SURE®				
	Control	7.0×10^5	1	0.1×10^{-5}
	Anthracene	9.0×10^{5}	20	1.7×10^{-5}
	1,2-Benzanthracene	5.9×10^5	27	4.5×10^{-5}
	2,3-Benzanthracene	8.5×10^{5}	14	1.6×10^{-5}
	Dibenz[<i>a</i> , <i>e</i>]anthracene	4.3×10^{5}	49	11.4×10^{-5}
	Dibenz[<i>a</i> , <i>h</i>]anthracene	8.5×10^{5}	15	1.8×10^{-5}
	Pyrene	8.5×10^{5}	16	1.8×10^{-5}
	Benz[a]pyrene	8.7×10^{5}	22	2.5×10^{-5}
	Benz[e]pyrene	9.1×10^{5}	13	$1.4~ imes~10^{-5}$

Table 1	Mutagenesis of <i>lacZ⁻</i> Hosts Transformed with pUC19- <i>lacZ</i> C ¹⁴¹ DNA Exposed to
	Polycyclic Aromatic Hydrocarbons Pretreated with Hepatic S9 Fraction from Aroclor
	1254-induced Rats

pUC19-lacZC¹⁴¹ DNA not exposed to the polycyclic aromatic hydrocarbons was used as control.

Host	Chemical	Number of	Number of	Mutant
most	(0.25 µg)	transformants screened	revertant	frequency
JM109				
	Control	8.6×10^5	1	0.1×10^{-5}
	Anthracene	8.9×10^{5}	15	1.7×10^{-5}
	1,2-Benzanthracene	5.7×10^{5}	8	1.4×10^{-5}
	2,3-Benzanthracene	9.4×10^{5}	8	0.9×10^{-5}
	Dibenz[a,e]anthracene	8.9×10^5	12	1.3×10^{-5}
	Dibenz[<i>a</i> , <i>h</i>]anthracene	9.5×10^5	12	0.3×10^{-5}
	Pyrene	8.8×10^{5}	15	1.7×10^{-5}
	Benz[a]pyrene	9.5×10^{5}	9	0.9×10^{-5}
	Benz[<i>e</i>]pyrene	11.0×10^{5} .	5	0.5×10^{-5}
SURE [®]				
	Control	7.0×10^5	1	$0.1~ imes~10^{-5}$
	Anthracene	9.0×10^{5}	20	1.6×10^{-5}
	1,2-Benzanthracene	5.9×10^5	27	3.9×10^{-5}
	2,3-Benzanthracene	8.5×10^5	14	2.2×10^{-5}
	Dibenz[a,e]anthracene	4.3×10^{5}	49	7.3×10^{-5}
	Dibenz[<i>a</i> , <i>h</i>]anthracene	8.5×10^5	15	2.6×10^{-5}
	Pyrene	8.5×10^{5}	16	2.7×10^{-5}
	Benz[a]pyrene	8.7×10^5	22	3.5×10^{-5}
	Benz[<i>e</i>]pyrene	9.1×10^{5}	13	4.8×10^{-5}

Table 2	Mutagenesis	of	lacZ-	Hosts	Transformed	with	pUC19- <i>lacZ</i> C ¹⁴¹	DNA	Exposed	to
	Polycyclic Ar	oma	atic Hy	drocart	oons Pretreate	d wit	n Human Cytoch	irome	P450 1A1	1

pUC19-lacZC¹⁴¹ DNA not exposed to the polycyclic aromatic hydrocarbons was used as control.

Table 3	Analysis of Nucleotide Changes in the Target Sequences of pUC19-lacZC ¹⁴¹ DNA
	Transformed into E. coli JM109 and SURE® Strains after Exposure to Polycyclic
	Aromatic Hydrocarbons Pretreated with Hepatic S9 Fraction from Aroclor 1254-
	induced Rats

Chaminala	5	Substitution	Deletion	Insertion	
Chemicals	$G \rightarrow A$	$G \rightarrow T$	$G \rightarrow C$	G	G
JM109					
Control	1	-	-	-	-
Anthracene	4	1	-	2	_
1,2-Benzanthracene	13	1	-	7	1
2,3-Benzanthracene	7	-	-	1	-
Dibenz[a,e]anthracene	3	1	1	12	-
Dibenz[a,h]anthracene	4	-	-	3	-
Pyrene	13	1	- '	3	-
Benz[<i>a</i>]pyrene	11	-	1	3	-
Benz[<i>e</i>]pyrene	7	1	2	2	-
SURE®					
Control	1	-	-	-	-
Anthracene	3	-	-	9	4
1,2-Benzanthracene	3	-		12	-
2,3-Benzanthracene	1	1000		7	3
Dibenz[<i>a</i> , <i>e</i>]anthracene	-	-	-	21	-
Dibenz[<i>a</i> , <i>h</i>]anthracene	2	-	-	6	
Pyrene	7	-	-	4	1
Benz[a]pyrene	4		-	10	1
Benz[<i>e</i>]pyrene	5	-	-	5	1

pUC19-*lacZ*C¹⁴¹ DNA not exposed to the polycyclic aromatic hydrocarbons was used as control.

<u> </u>		Substitution	n	Deletion	Insertion
Chemicals	$G \rightarrow A$	$G \rightarrow T$	$G \rightarrow C$	G	G
JM109					
Control	1	-	-	-	-
Anthracene	4	1	-	2	-
1,2-Benzanthracene	1	2	-	4	-
2,3-Benzanthracene	2		1	1	-
Dibenz[a,e] anthracene	5	-	-	2	-
Dibenz[a, h] anthracene	5	-	-	3	-
Pyrene	4	-	-	2	-
Benz[a]pyrene	3	-	-	2	
Benz[e]pyrene	2		-	1	-
SURE®	1				
Control	1	_	-	-	-
Anthracene	-	_	-	3	-
1,2-Benzanthracene	3	-	_	11	
2,3-Benzanthracene	1		-	7	-
Dibenz[a,e]anthracene	-		-	13	2000
Dibenz[a,h] anthracene	_	-	-	3	-
Pyrene	2	-		8	1
Benz[a]pyrene	2	-	-	7	1
Benz[e]pyrene	4	-		14	

Table 4Analysis of Nucleotide Changes in the Target Sequences of pUC19-*lacZ*C¹⁴¹ DNATransformed into *E. coli* JM109 and SURE[®] Strains after Exposure to PolycyclicAromatic Hydrocarbons Pretreated with Human Cytochrome P450 1A1

pUC19-lacZC¹⁴¹ DNA not exposed to the polycyclic aromatic hydrocarbons was used as control.

突然変異誘発率が認められたが, CYP1A1 による前処理 では 1,2-BA, DB[a,e]A と同様に Pyr や B[e]P など他 の PAH にも高い突然変異誘発率が認められた.これは, CYP1A1 が一様に PAH 類を変異原に活性化するとの報 告を支持するものと考える²⁰.しかしながら, Endo らは B[a]P などの PAH 類の変異原性を調べる場合, CYP1A1 による代謝物をさらに代謝活性化する共役酵素 系が必要であるとの知見を示している⁶⁰.このことは, CYP1A1 処理にグルタチオン-S-トランスフェラーゼ (GST)のような酵素処理を共役させることで, PAH 類 の変異原性は著しく異なる可能性を示唆している⁶⁰. 今後, CYP1A1/GST 系等を用いて変異原試験を行う必要がある と考える.

Table 3 と 4 には、8 種類の PAH による標的塩基配列 に誘導された突然変異を示した。JM109 を宿主菌とした 場合、S9 と CYP1A1 で前処理した PAH により誘導され た突然変異の約 70%は塩基置換によるものであり、突然 変異の 30%近くがフレームシフト型変異であった。一方、 SURE®では、フレームシフト型変異が 80%以上を占めて いた。また、これらの塩基置換変異は、G→A 変異が 90%以上を占め、フレームシフト型変異もグアニン1 塩基 の欠失によるものが約 70%を占めていることが認められ た (Table 3, 4). 変異の誘導は、PAH による *N*-アルキルグアニンが形成 されたために、G→A 塩基置換が優先的に誘導されたもの と推察される^{7,8)}. 一方、グアニン1 塩基の欠失は、同様 にグアニンの N 基に結合した PAH が DNA の二重らせ んの溝に入り、歪みを生じさせたためにフレームシフトが 誘導され、欠失が生じたものと思われる^{9,10)}. 最近、*N*-ア ルキルグアニンが形成されたとき、5′ 側に存在する塩基 配列が変異の誘発に強く関与することが報告されてい る^{11,12)}. 例えば5′ 側に TG 配列が存在すると、DNA トポ イソメラーゼにより T とG の間で開裂が生じてグアニン に結合した PAH が塩基配列構造の中に容易に挿入できる ようになる¹¹⁾. PAH によりフレームシフト型の突然変異 が優先的に誘導されるのは、標的塩基の5′ 側の塩基配列 の影響を強く受けたためと考える.

上記の知見から、S9 とヒト CYP1A1 により前処理され た PAH 類が GGG 連続配列のグアニンに結合する場合、 グアニンの 2 位の N 基に優先的に結合して、G \rightarrow A トラ ンジッション型塩基置換及びフレームシフト型変異を誘発 することが推察された.

献

 Ogawa H, Ohyama T, Katsura E, Katoh Y : Mutation Res., 394, 141-151 (1997)

lacZC¹⁴¹ DNA の標的 GGG 配列で誘発された塩基置換

2) 加藤芳伸,小川 廣:道衛研所報, 58, 1-9 (2008)

文

- 3) Chamber RW, Gojaka ES, Hojat SH, Borowski, HB : Proc. Natl. Acad. Sci. USA, 82, 7173-7177 (1985)
- Bhanot OS, Ray A : Proc. Natl. Acad. Sci. USA, 83, 7348-7352 (1986)
- 5) Jerina DM: *In vitro* Metabolic Activation in Mutagenesis Testing, Elsevier Biomedical Press, Amsterdam, 1976, p.159
- Endo K, Uno S, Seki T, Ariga T, Kusumi Y, Mitsumata M, Yamada S, Makishima M: Toxicol Appl. Pharmacol., 230, 135-143 (2008)
- 7) Frank EG, Saver JM, Kroth H, Ohashi E, Ohmori H Jerina DM, Woodgate R: Nucleic Acid Res., 30, 5284-5292 (2002)

- 8) Craziewicz MA, Saveer JM, Jerina DM, Copeland WC : Nucleic Acid Res., 32, 397-404 (2004)
- 9) Suh M, Ariese F, Small GJ, Jankowiak R, Hewer A, Phillips DH: Carcinogenesis, 16, 2561–2569 (1995)
- Bauer J, Xing G, Yagi H, Sayer JM, Jerina DM, Ling
 H: Proc. Natl. Acad. Sci. USA, 104, 14905-14910 (2007)
- 11) Pommier Y, Kohlhagen G, Laco GS, Kroth H, Sayer JM, Jerina DM : J. Biol. Chem., 277, 13666-13672 (2002)
- 12) Jonson AA, Sayer JM, Yagi H, Patil SS, Debart F, Maier MA, Corey DR, Vasseur JJ, Burke TR Jr, Marquez VE, Jerina DM, Pommier Y: J. Biol. Chem., 281, 32428-32438 (2006)